
Master Thesis
Unums and Posits: A Replacement

for IEEE 754 Floating Point?

by

Andreas Schärtl
Matrikel-Nr.: 21915251

Supervision:
Prof. Oliver Keszöcze

2021-08-03

Unums and Posits: A Replacement for
IEEE 754 Floating Point?

Masterarbeit im Fach Informatik

vorgelegt von

Andreas Schärtl

geboren am 01. Mai 1992 in Nabburg

angefertigt am

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Prof. Oliver Keszöcze
Abgabe der Arbeit: 03. August 2021

Erklärung. Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als
Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder
sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Declaration. I confirm that I have written this thesis unaided and without using sources
other than those listed and that this thesis has never been submitted to another examina-
tion authority and accepted as part of an examination achievement, neither in this form
nor in a similar form. All content that was taken from a third party either verbatim or in
substance has been acknowledged as such.

Andreas Schärtl, Erlangen, 2021-08-03

Arithmetic with real numbers is a foundations of computing and programming. While
the most common implementation of real arithmetic, IEEE floating point, has proven
itself practical for many applications, floats leave some things to be desired. Hard to
understand rounding rules and many special cases one has to keep in mind have lead to
various problems. Novel unum arithmetic promises to solve some if not all problems
introduced by float arithmetic. Of particular interest are (1) the recently introduced posits
as drop-in replacements for floats and (2) valids as a new iteration on traditional interval
arithmetic.

This thesis first reviews developments in computer arithmetic on the reals, in particular
related to recent developments on unum arithmetic. We contribute with a detailed discus-
sion and definition of the valid number format. We also provide a flexible implementation
of both the posit and valid formats which opens the gates for various interesting experi-
ments. In final evaluation, we compare accuracy and usability of both float and new unum
arithmetic based on various benchmarks and applications from different domains.

Contents

1 Introduction 1
1.1 Unsigned Integers: You can Only Have so Many Bits 1
1.2 Signed Integers: Duplicate Value Confusion 3
1.3 Integer Fractions: Jagged Accuracy . 5
1.4 Fixed Point Numbers: Incompatible Magnitudes 6
1.5 Floating Points: Scaled Fixed Point Numbers 7
1.6 We Live with Machines that Lie . 9

2 Unum Arithmetic 11
2.1 Unum Type I: Variable Accuracy Floating Points 11
2.2 Unum Type II: Projective Reals and Sets of Real Numbers 13
2.3 Unum Type III: Posit Arithmetic . 14
2.4 Unum Type III: Quires . 18
2.5 Unum Type III: Valid Arithmetic . 19
2.6 Summary . 20

3 A Definition of Valids 23
3.1 Attempting Cell Arithmetic . 23
3.2 Valids Defined . 26
3.3 Valid Comparisons . 29
3.4 Attempting Addition Based on Type I Rules 30
3.5 Error Interval Notation . 32
3.6 Addition Based on Error Intervals . 37
3.7 Subtraction Based on Addition . 40
3.8 Multiplication Based on Error Intervals 41
3.9 Valid Division Based on Multiplication 43
3.10 Summary . 44

4 Implementation 45
4.1 Existing Libraries . 45
4.2 Programming Interface . 46
4.3 Intermediate Representations Simplify Arithmetic 47
4.4 Reusing aarith Datatypes . 49
4.5 Keeping Track of Rounding . 49
4.6 Mathematical Functions . 50
4.7 Testing Strategy . 51

Contents

4.8 Summary . 52

5 Evaluation of the Implementation 55
5.1 Standard Arithmetic: Add, Sub, Mul, Div 55
5.2 Mathematical Functions . 56
5.3 Overhead Introduced By Valid Arithmetic 59
5.4 Summary . 60

6 Evaluating Type III Unum Arithmetic 61
6.1 Problems From Unum Literature . 61
6.2 Problems From Posit Literature . 67
6.3 Decimal Loss of a Unary Function . 68
6.4 Closure and Accuracy . 71
6.5 Commutativity, Associativity and Distributivity 74
6.6 Exploiting the Unit Interval? . 78
6.7 Some Experiments on Valids . 79
6.8 Full Applications . 82
6.9 Summary . 86

7 Conclusion 89

A Value of Floating Point 91

B Posits Visualized 92

C Standard Floating Point and Posit Types 93

D Decimal Loss 94

E Properties of Binary Relations 95

Bibliography 97

1 Introduction

If there is one thing computers should be good at, then it has to be numbers. Performing
accurate and fast arithmetic is what allows digital computers to outclass the long passed
“human computers” of previous times [1]. It will be hard to find anyone interested in
going back to pen and paper. But reality is that implementing arithmetic on computers
can be anything but trivial.

Computer
Arithmetic
Pitfalls

Computer arithmetic is about implementing arithmetic on digital computers. But to-
day’s computer arithmetic is riddled with hidden traps and surprises. Programmers have
to get used to many pitfalls or often choose to ignore them. In this introduction, we
look at contemporary definitions and implementations of computer arithmetic. While the
introduced formats (integers, fractions, fixed points and floats) will be familiar to any
reader, the focus here is on pitfalls and compromises introduced by these formats.

1.1 Unsigned Integers: You can Only Have so Many
Bits

We will start this discussion by looking at the natural numbers N, that is numbers

0,1,2, . . . , (1.1)

as natural numbers make up the building blocks from which we can then construct more
advanced number systems. Writing down some quantity n with a series of N digits

n = dN−1 · · · d1 d0 (1.2)

is familiar to any reader. In fact, “positional number systems” that split up quantities or
numbers into individual digits have been around for pretty much as long as there has been
human civilization [2, pp .195]. Formally, the value of n is then given by sum

n =
N−1

∑
i=0

di Bi (1.3)

where B is the base of the number system [3, pp. 8]. In day to day interactions, we will
usually pick B = 10. For example, we get

1234 = 4 ·100 +3 ·101 +2 ·102 +1 ·103. (1.4)

1

1 Introduction

Given an arbitrary number of digits, we see that we can use this notation to write down
any quantity n ∈ N.

Binary computers are better at working with B = 2 where digits are limited to either 0
or 1. But implementing natural numbers on computers is not as simple as choosing
base B = 2. When implementing some given number system on digital computers, we
face various restrictions. In particular, memory size and computation time are realities
we have to deal with. Perhaps the main differences when moving from math to computer
arithmetic are limitations and errors.

Fixed WidthComputers mean compromise. A first compromise computer designers may make is
that width N of a given number is not arbitrary. Rather it is fixed to a certain number
of bits. Many programmers will be familiar with the C programming language and its
various types

uint8 t, uint16 t, uint32 t, uint64 t (1.5)

that define natural numbers 8, 16, 32 or 64 bits in size [4]. This is no frivolous choice
made by programming language designers. Rather it reflects the underlying computer
architecture optimized for fixed width numbers [5, A1-40]. Software libraries that work
with numbers of arbitrary length do exist [6]. But emulating arithmetic arithmetic in
software is slow compared to optimized hardware. With this in mind, we can now define
the unsigned integers used to represent N on computers.

Defintion 1. An unsigned integer n of type UN is a bit string

n = dN−1 · · · d1 d0 (1.6)

of fixed length N that represents some value in N, The value of n is given by

n =
N1

∑
i=0

di 2i [3, pp. 21]. (1.7)

OverflowFixing width N limits the range of a given unsigned integer type. In particular, limit-
ing N can result in overflow. This is the case when the result of some operation requires
more digits than available by the given type. Overflow is a serious problem as it can be
difficult to diagnose yet be the cause of dangerous malfunctions [7]. Programmers have
learned to live with this constraint. Even modern programming languages expose over-
flow as a leaky abstraction to the developer. As such, overflow remains a concern that
requires serious attention or elaborate analysis tools [8].

Computer arithmetic deals with values of fixed size N. In consequence, even a simple
format such as UN has dangerous pitfalls. It is the first of many compromises we have to
keep in mind.

2

1.2 Signed Integers: Duplicate Value Confusion

1.2 Signed Integers: Duplicate Value Confusion

The natural numbers N include zero, but all values are non-negative. To represent the
integers Z, that is the numbers

. . . ,−2,−1,0,1,2, . . . , (1.8)

all we have to do is to extend a given natural number with an explicit sign. We add either
a plus (sometimes omitted) or minus sign to state that number is positive or negative.
Implementing integers on computer hardware could be as simple as adding an additional
sign bit. 1 indicates a negative and 0 a positive value [3, p. 54].

Defintion 2. A sign-magnitude integer k of type MN is a bit string

k = dN−1 · · · d1 d0 (1.9)

of fixed length N that represents some value in Z [3, pp. 54]. Absolute value |k| is given
by

|k|=
N−2

∑
i=0

di 2i (1.10)

and value of k is given by

k = (−1)dN−1 |k| (1.11)

Above definition really just sticks an additional sign bit to the familiar unsigned inte-
gers UN . For example, consider the following M4 integers

k0 = 0101=+1012 = 5 (1.12)
k1 = 1101=−1012 =−5 (1.13)

which have the same absolute value but different sign. Figure 1.1a shows the range of
values provided by the M4 type. Differentiating between positive and negative values
with a dedicated sign bit is intuitive. But it also has various drawbacks.

Redundant
Bit Patterns

One problem that arises from the MN format is that it contains two representations of
zero. For example, both

0000 and 1000 (1.14)

are valid representations of zero in the M4 format. This particular case is the first example
for a whole class of problems related to computer arithmetic, namely redundant values.
As we are already constrained in the range of values we can represent, we should at least
be economical with the use of all N bits. We should not waste bit patterns on redundant
values.

3

1 Introduction

2

1

3

−
0

−1

−2

−3

+
0

010

00
1

011

10
0

10
1

110

111

000

(a) Values provided by the M4 type, a sign-
magnitude integer with one sign bit and
three bits magnitude.

2

1

3

−
4

−3

−2

−1

0

010

00
1

011

10
0

10
1

110

111

000

(b) Values provided by the I4 type, a signed
integer with one sign bit. Negative val-
ues are encoded with the two’s comple-
ment.

Figure 1.1: Two ways of representing signed integers with a total of four bits. While the
simple sign-magnitude form might be more intuitive at first, it results in two
representation of zero which makes the format hard to work with.

Two’s Com-
plement

Redundant values can make it difficult to define equality and arithmetic. As algorithms
needs to consider more special cases, complexity grows [3, pp. 54]. Various solutions to
this particular problem been proposed. Today the most common solution in use is the so
called two’s complement.

Defintion 3. Given some unsigned integer n, the two’s complement Twos(n) of n is given
by

Twos(n) = (¬n)+1 (1.15)

in unsigned integer arithmetic where ¬n is the bitwise negation of n [3, pp. 55].

With the two’s complement in hand we can define signed integers. They are today’s
canonical format for representing values in Z in computer arithmetic.

Defintion 4. A signed integer k of type IN is a bit string

k = dN−1 · · · d1 d0 (1.16)

of fixed length N that represents some value in Z. If sign bit dN−1 is 0, then k is positive
and its value is identical to the MN integer with the same pattern. If the sign bit is 1,
then k is negative and its absolute value is the two’s complement Twos(k) interpreted as
an unsigned integer [3, pp. 55].

Signed integers have only one representation of zero and arithmetic is easy to imple-
ment in both software and hardware. The two’s complement solves our problem in this

4

1.3 Integer Fractions: Jagged Accuracy

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

(a) Range of the signed I4 type. Integers only represent full integer stops on the number line and
each step is evenly spaced.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

(b) Range of a R3,3 fraction which uses three bits for both numerator p and denominator q. Blue
lines indicate some fractional value x /∈ Z not representable with plain integers.

Figure 1.2: Comparing a plain signed integer with a fractional type. While the integer is
distributed with even steps on the number line, the fractional type has most
values clustered close to zero.

particular case. Still, it was a point worth investigating as redundant bit patterns come up
in various formats, confusing implementors and users alike. We will see that the more
complicated the number format, the harder it is to avoid duplicate patterns.

1.3 Integer Fractions: Jagged Accuracy

Integers can already get us very far, but for numeric applications, we need to be able to
represent fractional values as well. Notice the gaping holes in Figure 1.2a which plots the
range of the I4 type. As of now, we can only represent fixed steps with nothing between.
What we are missing is so called dynamic range. Our first attempt to solve this problem
will be to use fractions, that is we will store fractional value

x =
p
q

(1.17)

split up into nominator p and denominator q. Coupled with a dedicated sign bit, this
allows us to represent ratios and not just integers.

Defintion 5. An integer fraction x of type RN,M is a bit string

x = s pN−1 · · · p1 p0︸ ︷︷ ︸
Nominator p

qM−1 · · · q1 q0︸ ︷︷ ︸
Denominator q

(1.18)

of fixed length 1+N +M that represents some value in Q. Bit string x is made up from
sign bit s, unsigned integer numerator p and unsigned integer denominator q. The value
of x is given by

(−1)s p
q

[3, pp. 171]. (1.19)

5

1 Introduction

Jagged
Accuracy

Representing Q with fractions seems promising, but introduces a new problem, jagged
accuracy. Figure 1.2b illustrates what exactly we mean by jagged accuracy. Instead of an
even distribution of values on the number line, most of the types’ dynamic range clusters
close to zero. The steps between each discrete point on the number line differ in size.

Integer fractions have applications in cryptography as encryption often deals with find-
ing divisors for big numbers. They also see use in number theory [3, pp. 177]. For general
purpose computations however, integer fractions are seldom used. Even so, introducing
them is useful because they introduce the concept of jagged accuracy. A property one has
to keep in mind when working with such arithmetic types.

1.4 Fixed Point Numbers: Incompatible Magnitudes

Fixed point numbers are an alternative to integer fractions. Fixed point numbers do not
store rational values as actual fractions with nominator and denominator. Rather, they
use a representation that separates integer and fractional part. Instead of writing

1234
100

, (1.20)

we can use the more succinct representation

12.34 (1.21)

which uses a decimal point. This notation translates nicely to the binary world of com-
puter arithmetic.

Defintion 6. A fixed point number x of type QN,M is a bit string

x = kN−1 · · · k1 k0︸ ︷︷ ︸
Integer Part k

q0 q1 · · · qM−1︸ ︷︷ ︸
Fraction q

(1.22)

of fixed length N +M that represents some value in Q. Bit string x is encoded using the
two’s complement and consists of integer part k and fraction q. If the most significant bit
(sign bit) of x is 0, the value of x is positive and given by

x =
N−1

∑
i=0

ki 2i +
M−1

∑
i=0

qi

2i+1 . (1.23)

If the sign bit is 1, value x is negative and given by applying above Equation 1.23 to the
two’s complement of bit string x [3, pp. 183].

Example of
Fixed Point
Value

Maybe intimidating at first, Equation 1.23 merely splits up the bit string into integer
part k and fraction q. As an example, consider fixed point number x of type Q4,4, viz.

x = 0 0101 0110. (1.24)

6

1.5 Floating Points: Scaled Fixed Point Numbers

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Figure 1.3: The Q4,4 data type. Unlike the fractional type, values are evenly spaced.

The value of x is then given by

x = 1 ·22 +0 ·21 +1 ·20︸ ︷︷ ︸
Integer Part k

+
0
21 +

1
22 +

1
23 +

0
24︸ ︷︷ ︸

Fraction q

(1.25)

which of course is very similar to how we encode decimal fraction such as

12.34 = 1 ·101 +2 ·100 +
3

101 +
4

102 . (1.26)

Advantages
of Fixed
Point

Implementing arithmetic for fixed point numbers only requires rudimentary integer op-
erations. As such, software that implements fixed point numbers can be fast and efficient.
Fixed point arithmetic used to be commonplace when computer hardware was missing
built-in support for rational arithmetic. Low end embedded systems still use fixed point
for the same reason [3, pp. 211].

Equal
Distribution

Compared to integer fractions, fixed point numbers evenly distribute values on the
number line. Figure 1.3 illustrates this for a low resolution fixed point type. Compared
to integer fractions, fixed point numbers are equally accurate no matter the range. This
is great if all numeric variables in a given algorithm are similar in magnitude. But it also
means that fixed point numbers are not particularly flexible. For any given operation, all
operands need to stay within the same level of magnitude. As an example, multiplying
values

1.2 ·2−10 · 3.4 ·210 (1.27)

with big difference in magnitude requires either (1) the use of big N and M (wasting
space) or (2) accepting rounding error. Users always need to be aware of these pitfalls
and the problems caused by them [9]. The problem with fixed point numbers is that they
lack flexibility in respect to magnitude.

1.5 Floating Points: Scaled Fixed Point Numbers

So far we have looked at two was of representing Q, integer fractions and fixed point
numbers. But reality is that today’s computers do not use either format for rational arith-
metic. Instead floating point numbers are the dominant format and have been for a long
time [2, pp. 225, 3, pp. 84].

Scientific
Notation

The core idea behind floating point is that they represent numbers in a format akin to
the familiar scientific notation. Scientific notation represents numbers as a fraction raised

7

1 Introduction

to some scale. For example, the Avogadro Constant

NA = 6.02214076 ·1023 [10] (1.28)

as used in science would be quite awkward to write without its exponent. Another prop-
erty of floating points is that some bit patterns are reserved for special values. In partic-
ular, floating points reserve bit patterns for (1) not a number (NaN) when a given result
cannot be computed (e.g. as a result to division by zero) and (2) infinity to indicate that a
value is too big (+∞) or too small (−∞) to represent with the limited numbers of bits.

IEEE 754
Standard

Floating point numbers have been around for pretty much as long as there have been
digital computers [2, pp. 214]. Today when we talk about floating points (or “floats”), we
usually mean IEEE 754 floating points. IEEE 754 [11] standardized the format and was
released as early as 1985. A recent update to the standard appeared in 2007 [12].

Defintion 7. A floating point number x of type FM,E is a bit string

x = s mM−1 · · · m1 m0︸ ︷︷ ︸
Mantissa m

eE−1 · · · e1 e0︸ ︷︷ ︸
Exponent e

(1.29)

of fixed length 1+M +E that represents some value in R or alternatively any of the
three special values NaN, +∞ or −∞. Bit string x consist of sign bit s, unsigned integer
exponent e and mantissa m.

Aside from the familiar sign bit s, the value of some floating point x is split into a so
called mantissa or fraction m and exponent or scale e. Referring back to the example in
Equation 1.28, we can split up constant NA into fraction and scale, viz.

NA = 6.02214076︸ ︷︷ ︸
Fraction

·1023︸︷︷︸
Scale

(1.30)

and that is exactly what floating points are doing. Floating points really are scaled fixed
point numbers [3, pp. 81].

Defintion 8. Given floating point x of type FM,E , the value of x is given by

x = (−1)s ·1.m · 2B−e (1.31)

if x does not represent a special value. Constant B is the “bias” fixed for type FM,E .

Appendix A illustrates Definition 8 with an example if necessary. The advantage of
floating point compared to fixed point numbers is that floats are flexible. Numbers of
different magnitudes can happily live together in the same format. Surely this flexibility
is one of the reasons why floats are popular with computer architects old and new.

Floating points are the de-facto standard for real arithmetic. They perform okay for
most applications, though their jagged distribution and rounding behavior can be difficult
to understand. Rounding in particular is ever present in floating point arithmetic. This
rounding error can accumulate as each step introduces new inaccuracies. Errors caused
by rounding can be hard to track down, requiring complicated numerical analysis.

8

1.6 We Live with Machines that Lie

1.6 We Live with Machines that Lie

We reviewed various number formats. Tedious as it may have been, we made out various
classes of errors that haunt computer arithmetic. Beginning with signed integers, we ac-
cepted that numbers in computer arithmetic are limited by some fixed number of N bits.
This unfortunate reality results in a limited range of expressible values. Next up, defining
signed integers proved to be rather tricky, requiring the use of the two’s complement.
Clever engineering is required to avoid confusing and wasteful special and duplicate val-
ues. As a third format, we looked at integer fractions, an intuitive way of expressing
values in Q. Yet in practice, the distribution of values on the number line was too jagged
to be useful. Fixed point numbers FN,M solve this problem, but are limited in range and
magnitude. Users have to do quite a lot of thinking about which parameters N and M
to pick. Finally, we looked at floating point numbers. While in active use today, they
combine all problems discussed before. They are limited in range by a fixed number of
bits. They have many duplicate patterns for the same value (zero, NaN, infinity). They
are flexible in that they can adapt their magnitude but using them can be confusing or
even dangerous as rounding is always present.

While today, floating point arithmetic is quick, its results can be deceiving as rounding
error accumulates. The more steps involved in a given computation, the harder it is to
reason about the accuracy of the result. While computers are very fast, they also produce
lots of errors. Indeed, “[computers] lie all the time, and at incredibly high speeds.” [13,
p. xiv]. We should try to do better.

9

2 Unum Arithmetic

Computer arithmetic is riddled with error. We want to do better. This chapter takes a look
at ideas presented by John Gustafson on this topic. In particular we will review the ideas
behind so-called unum arithmetic. Unum arithmetic aims to provide a replacement for
today’s floating point arithmetic that is more accurate and honest about rounding. That
is, unum arithmetic tries to be explicit about rounding error rather than hide it.

Three
Types

By now there are three iterations on unum arithmetic; we will refer to them as Type I,
Type II and Type III [14, pp. 21-28]. Each type is quite different in design but all versions
share similar goals and features. This chapter reviews each type of unum arithmetic.

Heated
Debate

Early versions of unum arithmetic were the target of serious criticism. In particular,
William Kahan, known for work on the IEEE 754 floating point standard, has been rather
vocal about his dismissal of Type I and Type II arithmetic [15, 16]. We will refer back to
these criticisms as we introduce the different formats. Certainly from an outsiders point
of view, discourse between Gustafson and Kahan appears quite heated. We opt for a more
calm approach.

2.1 Unum Type I: Variable Accuracy Floating Points

In 2015, John Gustafson presented the Type I unum number format in “The End of Er-
ror” [13] meant as a replacement for IEEE floating points. Unum numbers are a super-
set of IEEE floats that track inaccuracies introduced during operation. As a superset to
IEEE floats, unums inherit sign, exponent and mantissa fields. The most notable change
compared to floats is the introduction of a so-called u-bit. The u-bit (uncertainty bit) in-
dicates whether the represented value is exact or only an approximation. Exact unums
(u-bit set to 0), are floating point values that represent a concrete value x on the number
line. Uncertain unums (u-bit set to 1) represent an open interval (x,y) between neighbor-
ing values x and y on the number line. Figure 2.1 illustrates this with an example.

U-Bit The idea here is that Type I unums allow the computer to be honest about results.
Consider the example in Figure 2.1 again. Say we wanted to represent real value 1/2 in
this format. If we were using traditional floating points without u-bit, we would have to
round the result to either 1 or 2, neither of which is correct. In contrast, unums do not
have to lie. Instead of returning a rounded result, they can be honest and instead return

1u = (1,2) (2.1)

which is no doubt a correct statement. The u-bit allows us to be honest about result.
When the result is uncertain, unum arithmetic does not pretend that it is not.

11

2 Unum Arithmetic

0u = (0,1) 1u = (1,2) 2u = (2,3)0 1 2 3

Figure 2.1: Simplified representation of unums on the number line. A given unum can
either represent a value exactly (u-bit set to 0, e.g. 1, 2, 3) or it can represent
an interval between neighbors on the number line. In that case, the u-bit is set
to 1, e.g. for 0u = (0,1) or 1u = (1,2).

0 0.5 1 1.5 2 2.5 3

↓

0u 2u0 2

Figure 2.2: Unums adapt their accuracy to fit the result without traditional rounding. In
this simplified example, a computation with a high resolution unum type
should return a result of x = (0.5,2). However, as unums can only represent
concrete values or intervals of neighboring values, result x is not expressible
in this type. To avoid rounding to a concrete value which introduces untracked
error, x is converted to a lower resolution environment where x is expressible
as x = 0u = (0,2).

Variable
Width

What is peculiar about the design of unums compared to other contemporary number
formats is that Type I unums are of variable width. With Type I unums, individual fields
such as mantissa and exponent vary in size. This is sometimes advertised as a particularly
efficient way of storing numbers as high resolution is only required for some but not
all values [13, pp. 40]. More importantly, variable width is necessary to approximate
arbitrary intervals (x,y) for any combination of x and y. If the result of some computation
does not fit exactly into a concrete value x or an interval of neighbors (x,y), the bit width
can be reduced, resulting in a coarser grid on the number line. The grid is adapted until
we can find a matching set up neighbors (x,y) to return. Figure 2.2 illustrates this with a
simplified example.

Interval
Arithmetic

Type I unums can adapt their resolution to approximate arbitrary intervals. Instead
of returning rounded values, unums return a bound on the result. This makes Type I
arithmetic similar to traditional interval arithmetic. Interval arithmetic has been around
for a long time and provides intuitive rules such as

[a,b]+ [c,d] = [a+ c,b+d] (2.2)

for addition. This allows us to do arithmetic on intervals and as such keep track of er-

12

2.2 Unum Type II: Projective Reals and Sets of Real Numbers

ror [17]. Recent developments include a standardized variant of interval arithmetic based
on IEEE floating point [18]. But the big problem with interval arithmetic is that the
bounds on results quickly grow to be so large that they are not at all useful [13, pp. 69,
19]. This has hindered adoption of interval arithmetic in the past.

Criticism The use of a dedicated u-bit to track error is novel, but even so Type I unums have
been the subject of heavy criticism. The most common argument being that they are
unfit for implementation on silicon. Variable width means that not all values will fit in
fixed registers, a cause of much concern [14, p. 22]. William Kahan of IEEE floating
point fame provides a more elaborate criticism. He notes that many of the advertised
features of Type I arithmetic are no by no means guarantees [15]. It is certainly true that
Type I unums can be more space-efficient and accurate than floats. But this is not always
the case. And if unums cannot offer any guarantees, users still have to apply numerical
analysis as is the case for floats. Difference being that analysis of floating point arithmetic
is a well-understood field while numerical analysis for unums is not [15, 16].

In summary, Type I unums are a superset of traditional IEEE floating points. The in-
troduction of a u-bit removes error from computation in that the result is not a rounded
value. Rather it is a best-effort bound on the result. The big downside is that Type I arith-
metic uses variable bit widths. While this can result in quite efficient storage, it means
that Type I unums are unpractical as they are difficult to implement in real hardware.
And without efficient hardware implementations, unums will never be a replacement for
floating points.

2.2 Unum Type II: Projective Reals and Sets of Real
Numbers

Projected
Reals

±∞

0

1−1

Figure 2.3: The projected re-
als wrap the num-
ber line on a circle.

Type II arithmetic aims to provide similar features as
Type I unums without variable width storage [20]. In-
spiration for Type II arithmetic comes from the “projec-
tively extended real numbers” or “projected reals” [21].
The projected reals wrap around the real number line
on a circle. Here, negative and positive infinity are not
unreachably far away; rather they occupy a concrete
point ±∞. The result is that we move from the well-
known number line to a number circle (Figure 2.3).

Type II
Unums

Based on the projective reals, we now have to
differentiate between two components that make up
Type II arithmetic. On one hand, we have the Type II
unums themselves. A Type II unum is a point on the
number circle that represents either a concrete value x

or an interval (x,y) of neighboring values x and y. Implemented with a u-bit, Type II
unums have a lot in common with their Type I predecessor. What is unique about Type II
unums is that the steps between grid points on the number circle are arbitrary. They are

13

2 Unum Arithmetic

not determined by the format. Rather users of a Type II environment decide on what
the individual steps should be. The points chosen between 1 and ±∞ are called the “u-
lattice” and this u-lattice determines the values on the other three quadrants. It is up to
developers to decide on a scaling that makes sense for the given application domain.

SORNsThe second component that makes up Type II arithmetic are the so called “SORNs”
which is short for “sets of real numbers.” A SORN is a set of arbitrary Type II unums.
That is, if x, y and z are Type II unums, then

{},{x},{y},{z},{x,y},{x,z},{y,z},{x,y,z} (2.3)

are all examples of possible SORNs. Because SORNs include the empty set, there is no
need for a special “not a number” value. Rather the result of illegal operations such as
division by zero is the empty set. SORNs are a genuine improvement on Type I unums.
While Type I unums can only represent intervals, SORNS represent arbitrary sets.

Unums Are
Pointers

Type I unums are a superset of floating points. To calculate the value of a given Type I
unum, we compute the product of fraction and scale. Type II unums are different in
that their bit strings do not tell us much without knowing the exact values on the u-
lattice. Indeed Type II unums are more like pointers to the u-lattice. Similar, to implement
SORNs that capture n-bit Type II unums, the suggested way is to employ bit strings
2n bits in length. Each bit represents one concrete Type II unum. As the size of SORNs
is exponential in n, it goes without saying that SORNs get quite large even for small n.

Implementation
Is Difficult

Type II unums can be a nice way of representing numbers in a given domain [22]. The
big problem is that doing actual down to earth arithmetic is hard. Given two Type II
unums x and y, to compute x+ y, both values are first converted to SORNs {x} and {y}.
Arithmetic is then done in terms of SORNs, which requires table lookups. These tables
get huge even for small values of n. The result of lookup {x}+{y} is either (1) a concrete
value convertible back to a Type II unum or (2) some value only expressible with a SORN.
Which means that Type II arithmetic is not closed. The result of arithmetic operations on
Type II unums is not always just another Type II unum, but rather it could be a SORN as
well. It is left up to users to deal with this ambiguity.

While Type II unums offer interesting properties, implementation is difficult. SORNs
and associated lookup tables exponential in size are problems impossible to ignore. Be
that as it may, ordering numbers on the projected reals is an interesting idea. SORNs can
represent arbitrary sets for a given type and Type II unums maintain the u-bit. That is,
Type II unums can track whether results are correct or merely guesses. Type III arith-
metic, which we will look at next, inherits much from Type II unums.

2.3 Unum Type III: Posit Arithmetic

With Type I and Type II arithmetic out of the way, it is finally time to look at the most
recent development, Type III arithmetic. It was first introduced by John Gustafson in
2017 [23, 24]. Just as Type II arithmetic is split into plain unums and SORNs, Type III
describes an interplay of so called “posits”, “quires” and “valids”. As we will see, posits

14

2.3 Unum Type III: Posit Arithmetic

1

2

4

16

1
2

1
4

116

0−
1

16
−
1

4

−1
2

−1

−2

−4

−
16

N
aR

Figure 2.4: The P4,1 type. A posit with width N = 4 and exponent size ES = 1. Values
on the right side of the circle are positive while values on the left side have
negative sign.

are a drop-in replacement for the familiar floating points. Quires are an aid for computing
more accurate results with posit arithmetic. Finally, valids are the closest to Type I and
Type II unums. Valids include the u-bit and can keep track of arbitrary error.

Posits Are
Like Floats

We begin with an introduction of posits. Posits are like floating points in that a given
posit encodes a product of scale (the exponent) and fraction (the mantissa). Posits repre-
sent concrete values exactly; any given posit type samples the number line just as floats
do. There is no u-bit in a posit, instead posits round to nearest after each arithmetic oper-
ation. Surely most readers will find this to be quite odd. Unums promised to be the end
of error, yet with posits we are back to rounding and as such error.

Drop-In Re-
placement

Indeed posits have more in common with floats than they do with previous iterations of
unums. This does have advantages. While the encoding of posits is totally different from
that of floating points, posits are meant to be a drop-in replacement for floats. It should be
easy to replace floating point arithmetic with the posit alternative. The supposed advan-
tage being that posits can be more accurate than floats in that for example a 32 bit posit
can beat a 64 bit float. Posits wants to “[beat] floating point at its own game” [24]. If
we can replace 64 bit floating point computations with 32 bit posit arithmetic, that means
less required storage, less load on memory and caches; ultimately it could mean faster
and more efficient arithmetic.

Projected
Reals And
Posits

What posits do have in common with Type II unums in particular is that we think of
posits as values on the projected reals. All concrete values of a given posit type can be
sorted on a circle where zero is at the bottom and ±∞ is at the top. Figure 2.4 illustrates
this with an example. Early literature on posit arithmetic refereed to the point on top of
the circle as “complex infinity”. More recent literature refers to it as “NaR”, as in “not a
real”, similar to NaN familiar from IEEE floating points [23, 25]. NaR is the only special

15

2 Unum Arithmetic

value of a given posit type and only one unique bit pattern is reserved for it. In particular,
posits have no way of representing +∞ or −∞, something floating point can do.

2.3.1 Binary Format
Posits are fairly well defined [23, 24, 25] and various implementations of the format
exist [26]. Regardless, it is useful to first review the basic format and semantics of the
posit format as posits are a major part of this thesis.

Defintion 9. A posit p of type PN,ES is a bit string

p = pN−1 · · · p1 p0 (2.4)

of fixed length N that represents some value in R or special value NaR. A given posit p is
a two’s-complement number and can be split into up to four fields: Sign bit S, regime R,
exponent E and fraction F.

Sign,
Regime,
Exponent,
Fraction

While floating point types are parameterized by the length of mantissa and exponent,
posit types PN,ES are parameterized by total length N and a so called exponent size ES.
But encoding the value of a given posit bit string p is more involved than with floats.
While posits are a fixed size format in that the width of a given posit is always N bits,
individual fields within those N bits can differ in length. To decode each field, we have
to first pay attention to the most significant bit.

• Most significant bit pN−1 is the sign bit S. Sign bit S set to 1 indicates that the value
of p is negative. Otherwise the value is positive.

If sign bit S is set to 1, we have to apply the two’s-complement before decoding any of
the remaining three fields. Parsing the remaining N−1 bits from left (most significant) to
right (least significant bit), we can make out a maximum of three more fields that might
be contained within a given posit p.

• Followed by the sign bit comes regime R. All regime bits except the last are iden-
tical to sign bit S. The last regime bit differs in that it is exactly ¬S.

The regime is not interpreted as an integer; rather the length of the bit string deter-
mines the value of the regime. Say if R = 0001, then R consists of four bits and
as such we arrive at a regime R = 4. Regime R can be both positive or negative,
depending on whether the first bits in the regime are 0 or 1, respectively.

Regime R plays an important role in determining the scale of p, acting as a kind of
“super-exponent” raised to a big power of two.

• If the regime did not consume all bits of p, then up to ES-many bits make up the
exponent E. Similar to floating points, E is interpreted as an unsigned integer that
represents an exponent value. Unlike floating point, posits have no bias that is
subtracted from integer E.

16

2.3 Unum Type III: Posit Arithmetic

• All remaining bits are part of fraction F . Fraction F works like the mantissa in
floating points. It represents some binary fraction with an implicit leading one.

For example, if F = 1010, then the value of F is

1.10102 = 1+
1
2
+

0
4
+

1
8
+

0
16

. (2.5)

If fraction F is zero or not present (pushed away by regime or exponent), the value
of fraction F is F = 1.

The binary format of posits is a novel design. While the total width N of a given posit
is fixed, fields inside the posit differ in length.

2.3.2 Value of Posits

Useed Before we can compute the value of a given posit p, we have to make one more definition.

Defintion 10. Given a posit p of type PN,ES, then constant

U = 22ES
(2.6)

is the useed of p [23, p. 9].

Useed U plays an important role in determining the dynamic range of a given posit
type. For the most commonly used exponent size ES = 2 we get

U = 222
= 16. (2.7)

Equation 2.6 looks harmless, but U quickly grows to be quite huge, even for small choices
of ES. For example, for ES = 3 we get an useed of U = 256 and for ES = 4 we already
get U = 65536. Notably the current draft of the posit standard fixes ES = 2 for all posit
types [25, p. 6], resulting in a standard useed U = 16.

Defintion 11. The value of a given non-NaR posit p can be computed in terms of

p = (−1)S · UR ·2E︸ ︷︷ ︸
Scale

· F︸︷︷︸
Fraction

(2.8)

where R is the regime, E the exponent and F the fraction of p [23, p. 13].

Scale and
Fraction

Just like the value of floating points comes down to a product of exponent and mantissa,
the value of a given posit is a product of scale and fraction. The scale of a given posit
consist of both useed U raised to regime R and exponent E raised to the power of 2. While
decoding the individual fields of a given posit can quite involved, computing the concrete
value from these fields is straight-forward.

17

2 Unum Arithmetic

Rounding
Rules

Posits only have one special value, NaR, which occupies one unique bit pattern. NaR is
used as a return for illegal operation such as division by zero, but never for any legal oper-
ation. In particular, posit values never overflow to infinity. If the result of a computation
is too big to represent in the current posit environment, the biggest representable posit
(called maxpos) is returned instead. For example, in the P4,1 environment (Figure 2.4),
computing 16+4 returns 16+4 = 16 because maxpos = 16. A comparable floating point
environment would return +∞ as a result. The argument for this decision is that round-
ing to infinity results in infinite error rather than some finite error. As such rounding
to maxpos is more correct that rounding to +∞ [23, p. 7]. Posits never round to zero
either. In cases where rounding to zero might occur with floats, posits round to minpos
instead. minpos is the smallest non-zero value contained in the given posit type. The
argument here is similar; it is supposed to be better to round to something rather than
round to nothing [23, p. 7].

2.3.3 Posits in a Nutshell
In summary, posits are a reinvention of traditional floating points. Posits represent con-
crete values on the number circle, not intervals as the u-bit is omitted. Any given posit
has a fixed length N and can be split into up to four different fields. Only one unique bit
pattern is reserved for special value NaR. Unlike floats, rounding favors limits minpos
and maxpos rather than zero or infinity. Posits are meant to be a drop-in replacement
for floats that can solve the same problems as floats but with less bits, resulting in more
efficient computer arithmetic.

Unsurprisingly, posits pop up again and again throughout this thesis. Typically we will
use low resolution types as the limited number of concrete values makes for easier to
understand examples. Appendix B plots some of these low resolution types handy for
review.

2.4 Unum Type III: Quires

Posits round very much like floating point numbers do, a true return of error as far unum
arithmetic is concerned. But Type III arithmetic has two tricks up its sleeve to ensure that
results are reasonably accurate, quires and valids. We will first look at quires, which are
well-defined, easier to understand and smaller in scope.

Defintion 12. Given a posit type PN,ES, the associated quire is a 16N-bit wide fixed-point
number of type QM,K where K = 8N−16 and M = 8N−16−1 [25, p. 7].

Accurate
Intermedi-
ate
Format

The quire is a high precision accumulator for intermediate operations. Parameters M
and K are mostly arbitrary, chosen such that for the majority of computations, the given
quire is accurate enough to circumvent intermediate rounding error. That is, the quire
is meant to circumvent excessive rounding introduced by multi-step computations [23,
pp. 81]. Instead of rounding posits after each step, as many operations as possible should
be moved to the more accurate quire. But the quire is only an intermediate format. In

18

2.5 Unum Type III: Valid Arithmetic

computations, posit arguments are first converted to a quire representation. Arithmetic
is done in the quire and then finally the result is converted back to a posit. Because the
quire has a much higher resolution than its associated posit type, intermediate results are
much more accurate.

Accumulator Calling the quire an accumulator is no accident. For each supported posit type, only
one associated quire is required on the arithmetic unit. As such, mathematical expres-
sions need to be rewritten to use an accumulator-like interface. This does mean extra
work for programmers switching from floating point to posit arithmetic. But Gustafson
argues in favor of this explicit conversion to and from quire as hidden conversions can be
confusing [23, pp. 81]. The idea behind the quire is not new. Similar ideas which inspired
Gustafson have previously been discussed as a “fused dot product” [23, pp. 80-81].

Fused Dot
Product

In summary, quires are an intermediate format for posit arithmetic. They can improve
accuracy as they cut down on accumulated rounding error. Admittedly, quires are no per-
fect solution as even the quire is finite in size and operations cannot always be rewritten to
use a single accumulator. Even so, the quire is a fundamental part of Type III arithmetic
and must not be ignored.

2.5 Unum Type III: Valid Arithmetic

What we omitted so far are valids. Valids are the final building block of Type III arith-
metic and were first introduced together with posits in 2017 [23]. Indeed, a short sum-
mary of valids is found on the first page of aforementioned introduction.

In valid mode, a unum represents a range of real numbers and can be used
to rigorously bound answers much like interval arithmetic does, but with
a number of improvements over traditional interval arithmetic. Valids will
only be mentioned in passing here, and described in detail in a separate
document [23, p. 1].

To the best of our knowledge, this “separate document” does not exist at this point. What
we do have is a rough sketch of the binary format [23, pp. 23]. There also exists a
prototype SigmoidNumbers [27] implementation worked on in 2016. SigmoidNumbers
implements an interval arithmetic that differentiates between open and closed endpoints.
But as SigmoidNumbers predates posit arithmetic, it is better understood as an experi-
mental precursor to Type III arithmetic rather than a concrete implementation of valids.

Binary
Format

For starters, a valid of type VN,ES consists of two PN,ES posit endpoints, both with an
additional u-bit. The union of posit and u-bit is called a “tile”, take two and you have a
valid (Figure 2.5). Compared to plain posits, valids already feel more like original unums
as they make use of the u-bit.

Do note that the original literature actually defines VN,ES valids to consist of PN−1,ES
tiles. We find this to be quite confusing which is why we take the liberty to slightly
change the definition in our thesis. Rest assured that this change is only a formality. All
of our findings apply just as well to the original definition.

19

2 Unum Arithmetic

Figure 2.5: Valid VN,E binary format. Any such valid consists of 2N +2 bits q2N+1 down
to q0. Each of the two tiles t and s consists of a PN,E posit p and a dedicated
uncertainty bit u.

Valids Are
Intervals

Although details on the format are left open at this point, it is clear that valids represent
open or closed intervals. With valids, we should be able to regain the ability to represent
both concrete posits p as well as intervals (p,q) of arbitrary posits p and q. A feature we
lost with posits, coming from Type I and Type II arithmetic. That said, we can already
tell that valids are a regression compared to SORNs. As valids have only two endpoints,
they will never be able to represent arbitrary sets of posit values.

2.6 Summary

By now we should have developed a feeling for the different types of unum arithmetic.
Type I unums are numbers of variable size that adapt themselves to accommodate round-
ing error. Type II unums and the associated SORNs are based on the projective reals in
that they represent values or sets on a number circle. While Type I and Type II arithmetic
offer interesting properties, implementation is difficult.

Type III
Arithmetic

Finally, Type III arithmetic is divided into posit, quire and valid arithmetic. Posits want
to be a drop-in replacement for floats. Algorithms written for floating point arithmetic
should be trivial to port to use posits instead. Quires on the other hand are an aid for
accurate posit arithmetic. But the quire is only a temporary register, for storage the posit
format is preferred. Finally, valids appear to be intervals of two posit endpoints. Unlike
posits and quires, valids contain the u-bit so familiar from Type I and Type II arithmetic.

2.6.1 Problem Statement

Float Re-
placement

Wee see that posits could provide an alternative to traditional floats. But posits are also
the odd one out in the unum family. They suffer from rounding error and do not contain
the u-bit. Indeed many problems identified in Chapter 1 also apply to posits. Posits are
limited in bit width, so only a fixed finite number of values can be represented. While
posits do not have duplicate patterns, their complex encoding can make them difficult to
understand. Perhaps worst of all, rounding is ever present with posit arithmetic. The first
open question we have to ask is whether posits can be a genuine replacement for floating
points that is actually better.

Valids Are
Left Vague

The second question is related to valids. Because surely valids are the true successor
to Type I and Type II unums. Yet very little is available on them. As such it is an open

20

2.6 Summary

question how to design and take advantage of the format. In the following section, we
will investigate the properties of a canonical valid arithmetic. We will see that valids have
potential to be useful, but understanding them in detail is not the easiest task.

21

3 A Definition of Valids

Contributions This chapter focuses on the valid format. We contribute with a detailed discussion of
valid tiles and the valid format itself. We identify special values that arise from the
current design. Finally, we introduce algorithms for valid arithmetic not previously found
in literature. What we arrive at its a working definition of valids that can be used for
experiments. A building block for future developments.

Valids As
Debugging
Environ-
ment

The big challenge is that valids are not exactly well defined. What we can infer is
that valids represent some kind of interval arithmetic with posit endpoints. The domain
of valids is more one of exploration and development. Gustafson himself has made the
following comment aimed in this direction in an online discussion.

I haven’t written them up yet, but valids are what you want if you [. . .]
want software that can gracefully and mathematically handle the results that
make floats generate a NaN. Think of the valid computing environment as the
numerical debugging environment for posits. It’s slower and ultra-careful
and rigorous, but once you get your algorithm to the point where it never
tries to color outside the lines, then switch to posits and go FAST [28].

Valids are not meant to be the go-to format for arithmetic, rather they are a programming
or debugging tool.

3.1 Attempting Cell Arithmetic

From literature we do know that valids are made from two tiles where any given tile
consists of a posit with an additional u-bit [23, p. 23]. A detailed discussion of valid tiles
is missing however. As a starting question, we wondered whether it might be possible
to design useful arithmetic around just these plain tiles. To make the distinction between
(1) tiles as building blocks of valids and (2) tiles as objects on their own explicit, we
differentiate between (1) tiles and (2) “cells”. While tiles are building blocks of valids,
cells are stand-alone tiles.

Defintion 13. A cell c of cell type CN,ES is a bit string of length N +1 consisting of (1) a
posit p of length N with exponent size ES and (2) an additional u-bit. Cells c with u-bit set
to 0 represent the value of p exactly. Cells with u-bit set to 1 represent the interval (p,q)
where q is the successor of p.

Cells Are
Like Type I
Unums

As an example, Figure 3.1 shows all possible cells that use P3,1 posits as an underlying
posit type. We see that cells are very reminiscent of Type I unums. Any given cell can

23

3 A Definition of Valids

1

1u

4

4u
1

4
u

1
4

0 u

0−
1 4

u−
1

4

−1u

−1

−4 u

−4

±
∞

u

±
∞

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

(a) Cells represented either with their con-
crete value p or their interval neigh-
bor pu. Note that p and pu have match-
ing bit patterns except for the final u-bit.

(1,4
)

(4
,∞

)

(1/4,1)

(0, 1/4)

(−
1 /

4,
0)

(−1,−
1/4)

(−4,−1)

(−
∞
,−

4)

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

(b) Cells in interval notation. Of particu-
lar interest should be the intervals next
to ±∞. If we approach from the pos-
itive side, we arrive at +∞, if we ap-
proach from the negative side we arrive
at −∞.

Figure 3.1: C3,1 tiles made from P3,1 posits. Adding an additional u-bit means that we
can represent intervals pu = (p,q) between neighboring posits p and q.

represent either value p exactly or alternatively an interval (p,q) of neighboring values p
and q. And just like Type II unums, cells are laid on a circle inspired by the projected
reals. On the downside, unlike Type I unums, cells do not have any way to adapt their
accuracy. As such, cells cannot approximate arbitrary intervals. Looking at Figure 3.1
again, the given cell type can represent the interval (1,4) = 1u, but it cannot approximate
the interval (0,4) because 0 and 4 are not direct neighbors. Cells are like Type I unums,
but more limited.

3.1.1 Cell Comparisons
Cells discretize the number circle with points p and intervals (p,q) in between. The first
operation we will define on cells are the comparison operations. These will also prove
useful later when we define comparisons on valids.

Defintion 14. Two cells c and d of cell type CN,ES are equal (i.e. c = d) if and only if the
bit patterns of c and d are identical. In particular, special value ±∞ is equal to itself.

Comparing cells for equality is identical to comparing posits or plain integers for equal-
ity as there are no redundant bit strings that represent the same value or interval. Defining
the less-than operation is a bit more involved, but we find that it is also quite intuitive.

Defintion 15. Given two cells c and d of cell type CN,ES, we say that c is less than d (i.e.
c < d) if and only if the bit string of c is less than the bit string of d when compared like
signed integers. The only exception is special value ±∞, which is less than no value.

24

3.1 Attempting Cell Arithmetic

Above definition may feel a bit technical. An easy way of understanding Definition 15
is that cell c is less than cell d if c is further on the left side of the circle than d. What
remains is the special value±∞ which is both positive and negative. In consequence, we
cannot reasonably say that it is greater or less than any other value.

3.1.2 Cell Arithmetic is not Closed
With their familiar Type I unum feel, one might be tempted to define cell arithmetic as an
arithmetic that can stand on its own. But when attempting such a thing, one very quickly
runs into a problem. The result of cell operations often does not fit inside another cell.

Consider the following example of a canonical cell arithmetic based on P3,1 posits
(Appendix B). It seems obvious that, say,

0+
1
4
=

1
4

(3.1)

holds in this environment. In this case, cell arithmetic is identical to posit arithmetic as
the result is already perfectly representable in just plain posits. But where in plain posit
arithmetic we have to be satisfied with

1+1 = 1 (3.2)

as results are rounded to the nearest representable posit, we could instead return

1+1 = (1,4) (3.3)

in cell arithmetic. We cannot return the correct result of 2, but rather than hiding rounding
error, cell arithmetic can at least be honest. The honest answer in this case is that the result
is somewhere between 1 and 4. Cell arithmetic allows us to correctly capture the result.
But unfortunately things do not always work out in our favor. Consider the case of

(−4,−1)+(1,4) = (−4+1,−1+4) ?
= (−3,3) (3.4)

where we are adding intervals and as such are forced to apply the rule

(a,b)+(c,d) = (a+ c,b+d) (3.5)

adapted from Type I unums and traditional interval arithmetic [13, p. 113]. The problem
here is that the resulting interval of (−3,3) fits in none of the available cells. Cells also
lack the ability to dynamically scale their resolution to accommodate such results. No
matter at which one of the 24 cells from Figure 3.1 we look at, none of them strikes us as
an acceptable result for above computation.

This example shows that cell arithmetic cannot be closed. When adding two cells we
may not have any way of representing the result without being completely wrong. One
can find many such examples for other arithmetic operations as well. As such we have to
accept that cells on their own are probably not particularly useful.

25

3 A Definition of Valids

3.2 Valids Defined

Defintion 16. A valid v of valid type VN,ES is a bit string of length 2N+2 consisting of two
tiles t = (pt ,ut) and s = (ps,us) where each individual tile consists of a PN,ES posit end-
point p and a u-bit. Valid v represents an interval on the tiled number circle. That is, v is
a set that contains all cells between start pt and end ps when traveling counter-clockwise
on the number circle. The individual interval endpoints are open if the respective u-bit is
set and closed if the respective u-bit is not set.

ExamplesThe easiest way to understand above definition is to think of some examples, some of
them illustrated in Figure 3.2. Pick any two endpoints on the number circle and you can
make a valid that includes those endpoints and everything between. Because endpoints
are so important, we use the notation

v = {t;s} (3.6)

for valid v composed of start tile t and end tile s. We use curly braces to indicate that the
bounds can be either open or closed, depending on the values of t and s. Also do note the
use of a semicolon which differentiates above notation from traditional interval notation
(x,y). For example, we get

{0;4}= [0,4] {1;4u}= [1,4) {1u;4}= (0,4] {1u;4u}= (1,4) (3.7)

where we use a raised u to state that the u-bit is set for the given endpoint.

3.2.1 Regular and Irregular
Note that so far, starting point t has always been smaller than endpoint s. We call these
valids regular. What is maybe a bit unexpected are valids that are not regular, that is
valids where start t is bigger than end s. We call these valids irregular.

Defintion 17. Valid v = {t;s} with start tile t and end tile s is called regular if t ≤ s. If
on the other hand t > s holds true, v is called irregular.

Both regular and irregular valids are allowed, though we find that regular valids are
much easier to work with. It should also be apparent that any irregular valid has to
contain special posit value NaR.

3.2.2 Valid Set Operations
A slightly different way of looking at valids is that a given valid is a set of cells, delimited
by tile endpoints. While it is convenient to write valids as intervals, we can also list the
elements (the cells) in the valid. For example, for v ∈V3,1 (Figure 3.2) we get

v = [−1,4) = {−1,(−1,−1/4),−1/4,(−1/4,0),0,(0, 1/4), 1/4,(1/4,1),1,(1,4)}. (3.8)

26

3.2 Valids Defined

1

1u

4

4u

1
4

u

1
4

0 u

0−
1 4

u−
1

4

−1u

−1

−4 u

−4

±
∞

u

±
∞

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

(a) Regular intervals. The blue one on the
left represents open interval (−4,−1/4)
while the red valid on the bottom right
represents closed interval [0, 1/4].

1

1u

4

4u

1
4

u

1
4

0 u

0−
1 4

u−
1

4

−1u

−1

−4 u

−4

±
∞

u

±
∞

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

(b) Irregular interval (1,−1). We begin at
startpoint 1 and travel counter-clockwise
until we reach endpoint −1. In particu-
lar, this valid contains special cell ±∞.

Figure 3.2: Some V3,1 valids on the number circle. A closed endpoint is indicated by a
straight line while an open endpoint is represented by parentheses at the end.

Valids are really just sets and as such it comes natural to use standard set operations on
them. For example, we can write

1 ∈ v (3.9)

to indicate that cell 1 is part of valid v. Operator ∈ is not the only set operation we can
use on valids. We can also take the inverse v−1 of a valid v.

Defintion 18. Given a valid v ∈ VN,E , the inverse v−1 is the valid which contains all
cells c ∈CN,E which v does not contain.

To illustrate this with a short example, if we take a look at above v = [−1,4) (Equa-
tion 3.8) again, we can see that its inverse is

v−1 = [4,−1) = {4,(4,∞),±∞,(−∞,−4),−4,(−4,−1)}. (3.10)

We see that valids can be understood as sets of cells and as such it comes natural to use
typical set operations in conjunction with valids.

3.2.3 Special Valids
While many valids v = {t;s} define intervals on R, certain special valids are of particular
interest. In total, we found four classes of valids worth extra discussion. Note that for the
most part we did not exactly invent these special valids. Rather they were discovered in
that they naturally arise out of the limited information we have on the valid format.

27

3 A Definition of Valids

Real Set (−∞,∞)

If we want to say that v represents some finite real value, but we are not sure at all about
which one exactly, we use the real set represented by valid

v = (−∞,∞) = {NaRu;NaRu}.

Not A Real ±∞
Posits have one special value: NaR. While valids are supposed to be useful without an
exceptional value like NaR, valid

v = {NaR;NaR}

naturally arises as a representation of NaR or perhaps ±∞. We could declare this partic-
ular valid as illegal. But as that would waste a precious bit pattern and introduce a special
case to all operations, we prefer not to.

Empty Set ∅

Empty set ∅ is the valid that contains no cells. Given any non-NaR posit p, we define

v = (p, p) = {pu; pu}

to represent ∅. All representations of the empty set are equal to each other, regardless
of p. Posit p needs to be non-NaR because {NaRu;NaRu} represents the real set (−∞,∞).

Full Set ◦
Full set ◦ is the inverse of the empty set, that is valid ◦ contains all cells on the number
circle, including ±∞. For any non-NaR posit p, we get

v = [p, p) = {p; pu}

to represent the full set ◦. This works out because we start at concrete value p and then
travel the number circle until we reach the cell just before p. That is one round trip on
the number circle which includes every possible cell. We can also represent ◦ as

w = (q,q] = {qu;q}

where we start ever so slightly off from q and travel the number circle all the way until
we reach point q. Full set ◦ is different from the real set (−∞,∞) in that ◦ contains ±∞
while the real set does not.

28

3.3 Valid Comparisons

3.2.4 Binary Format Reviewed

Wasted
Patterns

This definition captures the basic encoding of valids as it arises from the binary format.
It is by no means perfect. For starters, we waste a lot of bits on redundant representations
for both the empty set ∅ and on the full set ◦. It is tempting to use duplicate bit patterns
to represent additional real interval values. But in favor of a definition that is easy to
understand, we prefer not to.

What To Do
With NaR?

Another inconvenience is special value±∞. Valid±∞, that is [±∞,±∞], is a tile we
have to deal with as it arises out of the binary format. As we do not want to declare ±∞
an illegal state, we keep it as part of our definition.

3.3 Valid Comparisons

Before we start with the scary part, arithmetic, we first define the comparison operations.
In particular, we will now look at the check for equality and the less-than operator on
valids.

Defintion 19. Two valids v and w of valid type VN,ES are equal (i.e. v = w) if and only
if v and w contain the same cells.

In practice, this means that two valids v,w ∈ VN,ES are equal if any of the following
conditions is met.

• Both v and w are bitwise identical, that is they represent the same interval down to
the endpoints.

• Both v and w represent the empty set, that is v = w = ∅. This special case is
necessary because there are multiple ways of expressing the empty set.

• Both v and w represent the full set, that is v = w = ◦. Again, as there are multiple
ways of expressing the full set, a special case is necessary.

NaR And
Equality

We do not define any special cases related to ±∞. Complex infinity is only equal
to itself and nothing else. This is identical to how equality is treated for NaR when
talking about posits. With Definition 19 we get an easy to understand definition for valid
equality. The less-than operation on the other hand involves more creativity. In particular,
comparing with valids that contain ±∞ is something to keep in mind.

Defintion 20. Given two valids v and w of valid type VN,ES, we say that v is less than w
(i.e. v < w) if and only if any cell c ∈ v is less than any cell d ∈ w, that is

v < w ⇔ ∀ c ∈ v . ∀ d ∈ w . c < d (3.11)

Both regular and irregular cases are illustrated in Figure 3.3. For most cases above
definition is pretty straight forward. We run into an unfortunate situation if we compare
with a tile that contains ±∞. Complex infinity has both positive and negative sign, so

29

3 A Definition of Valids

1

1u

4

4u
1

4
u

1
4

0 u

0−
1 4

u−
1

4

−1u

−1

−4 u

−4

±
∞

u

±
∞

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

u

v w

(a) Valid u in blue on the left, valid v in
green on the bottom left and valid w on
the bottom right. Only u < w holds true
as all cells in u are smaller than all cells
in w. Overlapping valids such as u and v
are never less than each other.

1

1u

4

4u

1
4

u

1
4

0 u

0−
1 4

u−
1

4

−1u

−1

−4 u

−4

±
∞

u

±
∞

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

w

x

(b) Valid w in red on the bottom right
and irregular valid x in blue on the
top. While x contains elements smaller
than w, it also contains elements greater
than w. In particular, x contains spe-
cial value±∞ and as such any less-than
comparison with x has to return false.

Figure 3.3: Visualizing the comparison operators on V4,1 valids. Any less-than compari-
son can only be true if both intervals are regular.

clearly it can never be less than anything, nor can it be greater than anything. We have to
accept that v < w is never true if any of v or w contain the special value ±∞. A corollary
is that less-than comparisons with irregular valids are always false.

3.4 Attempting Addition Based on Type I Rules

Our first shot at defining addition on valids did not succeed. But realizing why exactly it
failed is well worth the effort. This first attempt is based around the definition of addition
for Type I arithmetic [13, p. 113].

3.4.1 Porting Type I Addition
Type I addition is defined in terms of a table that covers all possible cases [13, p. 113].
We adopted these rules for use with valid arithmetic. Table 3.4 lists the individual rules
as we ported them to valids. We can make some observations here.

• In most cases, we will be looking at intervals (a,b) with a,b ∈ R. Here we apply

[a,b]+ [c,d] = [a+ c,b+d] (3.12)

familiar from Type I unums and traditional interval arithmetic [29, p. 1048]. Type I

30

3.4 Attempting Addition Based on Type I Rules

x [±∞ (−∞ (∞ (a [a

[±∞ [±∞ [±∞ [±∞ [±∞ [±∞
(−∞ [±∞ (−∞ [±∞ (−∞ (−∞
(∞ [±∞ [±∞ (∞ (∞ (∞
(c [±∞ (−∞ (∞ (a+ c (a+ c

[c [±∞ (−∞ (∞ (a+ c [a+ c

(a) Table for evaluating left tile x.

y ±∞] −∞) ∞) b) b]

±∞] ±∞] ±∞] ±∞] ±∞] ±∞]

−∞) ±∞] −∞) ±∞] −∞) −∞)

∞) ±∞] ±∞] ∞) ∞) ∞)

d) ±∞] −∞) ∞) b+d) b+d)

d] ±∞] −∞) ∞) b+d) b+d]

(b) Table for evaluating right tile y.

Figure 3.4: Prototypical addition table for valid addition v+w = {a;b}+{c;d}= {x;y}
based on previous work in The End Of Error [13, p. 113]. As valids are built
from posit endpoints and posit arithmetic introduces rounding error, a naive
implementation of above tables results in incorrect results.

arithmetic prides itself in being a superior version of traditional interval arithmetic.
But as a matter of fact it is made from very similar rules.

• Special value±∞ has priority over everything else. If it shows up when computing
a bound, that bound will then also be ±∞.

• Adding endpoints ∞+∞ and −∞+−∞ behaves well, returning infinity for a
given endpoint in the result.

• Adding endpoints∞ and −∞ is something we cannot do. We have to fall back to
special value ±∞ in the final result to indicate error.

• A bound will only ever be closed if both arguments also represent closed bounds.

One difference compared to Type I addition is that we have to handle special value ±∞
which does not exist in a Type I environment. Type I unums can fall into illegal states, in
which cases the unum environment raises an exception [13, p. 113]. We decide against
exceptions here as that would add another layer to valid arithmetic. Instead we return a
silent error in the form of ±∞.

3.4.2 Posit Rounding Introduces Error
The rules listed in Figure 3.4 are intuitive and easy to follow column by column. The
big problem is that each individual operation in Figure 3.4 is done in posit arithmetic.
This introduces rounding error. Type I arithmetic does not have this problem as unums
can adapt accuracy as necessary. But posits do no such thing. Consider the following
example

(1/16,2)+(1,4) (3.13)

in the V4,1 environment (Appendix B). Think about how this problem might be solved
with the rules as defined so far. According to the rules in Figure 3.4, above sum results

31

3 A Definition of Valids

in a left bound

x = (1/16+1 (3.14)

and right bound

y = 2+4). (3.15)

The notation used here, based on The End of Error, is a bit odd but should be intuitive.
We have to keep in mind that we are computing left and right bounds of a given result.
As such the parentheses (open or closed) are part of the result.

The real issue is the following. Posit arithmetic introduces a problem here as we arrive
at x = 1/16+1 = 1 and y = 2+4 = 4, both rounded to nearest. Which means that the final
result, computed based on the rules in Figure 3.4, is

(1/16,2)+(1,4) = (1,4) (3.16)

which is not correct. Evaluating Equation 3.13 with perfectly accurate interval arithmetic
tells us that the result is anywhere inside interval

(1/16+1,2+4) = (17/16,6). (3.17)

Surely the right answer in a V4,1 environment should be

(1/16,1)+(1,4) = (1,16). (3.18)

Because posit arithmetic introduces rounding error, a naive definition of addition based
on Type I rules does not result in acceptable results. We have to be a bit more creative.

3.5 Error Interval Notation

To find a working definition of valid arithmetic, we first have to think about what intervals
really mean. When we write

(x,y) (3.19)

that represents the interval starting just after point x on the number line and ending just
before y. We find that we can rewrite any such interval to use only closed bounds. Put in
concrete terms, we can rewrite

[x,y] = [x,y] (3.20)
[x,y) = [x,y− ε] (3.21)
(x,y] = [x+ ε,y] (3.22)
(x,y) = [x+ ε,y−η] (3.23)

32

3.5 Error Interval Notation

p+p q Succ(p+p q)

p+qrounded down

+ε

Figure 3.5: Addition of posits p and q can yield a result that was rounded down when the
exact result p+q is not perfectly representable. If we want to be exact, then
we can rewrite this sum as (p+p q)+ ε where ε indicates that the result is to
the right on the number line.

Pred(p+p q) p+p q

p+q rounded up

−ε

Figure 3.6: Addition of posits p and q can yield a result that was rounded up when the
exact result p+q is not perfectly representable. If we want to be exact, then
we can rewrite this sum as (p+p q)− ε where ε indicates that the result is to
the left on the number line.

where ε and η are positive non-zero errors. Choosing Greek letters such as ε is no
accident as it draws inspiration from infinitesimals found in early calculus [30]. But it is
important to keep in mind that errors ε and η are not infinitesimal, they are only unknown.
This error interval notation fits nicely with our understanding of regular valids. Valid

v = (p,q) = {pu;qu}= [p+ ε,q−η] (3.24)

represents some value that appears some uncertain amount ε after start p and some η

before end q.

3.5.1 Error Interval Posit Arithmetic
We can also extend standard posit arithmetic to use error interval notation. This allows
us to keep track of rounding information, not unlike the u-bit from unum arithmetic. As
an example, consider the P4,1 type (Appendix B). Posit arithmetic will return

4+p 2 = 4 (3.25)

because the accurate result 4 + 2 = 6 cannot be represented and as such the result is
rounded to closest point 4. We use the +p notation to indicate that addition is done in
term of posit arithmetic and not perfectly accurate math. In particular, we rounded the
correct result 6 down to 4. Rounding down to p means that the result is actually something

33

3 A Definition of Valids

ever so slightly more than p, that is

4+2 = 4+ ε (3.26)

rather than just a plain 4 (Figure 3.5). This also works the other way around. If we return
a result that was actually rounded up to q, we better write the result as q−ε . For example,
this is the case for

1
2
+

1
4
= 1− ε (3.27)

in the P4,1 type (Figure 3.6). This notation is not unlike what is provided by the u-bit.
But error interval notation will prove useful when computing more complicated sums as
error can be resolved back to interval bounds. For now we can sum up above rules as

p+q =


p+p q if p+p q yields exact result
(p+p q)+ ε if p+p q is rounded down
(p+p q)− ε if p+p q is rounded up

(3.28)

for posit addition that keeps track of rounding.

3.5.2 Combining and Simplifying Errors
Error interval notation is useful because computing the sums and products of more com-
plicated terms is straight-forward. For example, sum

(a+ ε)+(b+η) = a+b+ ε +η (3.29)

can be simplified to

a+b+ ε +η = a+b+ ε (3.30)

because errors ε and η are of no particular value. Rather they only tell us that the result
is somewhere afterwards. In total, we get the following simplification rules:

ε0 + ε1 + · · ·+ εn = ε (3.31)
−ε0− ε1−·· ·− εn =−ε (3.32)

ε0 + · · ·+ εn− εn+1−·· ·− εm =±ε (3.33)

Adding or subtracting any number of unknown errors can be reduced to just some positive
or negative error. But when dealing with both positive and negative errors, we have no
idea about the concrete result. The only honest thing we can say is that there is some
error±ε of uncertain sign. While the u-bit only knows two states (certain and uncertain),
error interval notation can represent a total of four states. All illustrated in Figure 3.7.

34

3.5 Error Interval Notation

Pred(p) p Succ(p)

p+ εp− ε

p± ε

Figure 3.7: Error interval notation allows us to indicate that a given value (1) is exactly p
or that it (2) comes before, (3) after or (4) either before or after p.

3.5.3 Resolving Error Intervals to Tiles
Error interval notation is only meant as an intermediate representation. In particular, it
will prove useful in our definition of valid arithmetic. Given valid v rewritten in error
interval notation

v = [slo, shi], (3.34)

we now need to think about we can resolve v back to a standard valid encoding. Depend-
ing on whether we are resolving back to left bound slo or right bound shi, the rules are
slightly different. For the lower bound we get

Resolvelo(slo) =


[p if slo = p
(p if slo = p+ ε

(Pred(p) if slo = p− ε

(Pred(p) if slo = p± ε

(3.35)

and for the upper bound we get

Resolvehi(shi) =


p] if shi = p
Succ(p)) if shi = p+ ε

p) if shi = p− ε

Succ(p)) if shi = p± ε

(3.36)

instead. Function Succ (and Pred) work as expected in that they return the successor (or
predecessor) of given posit on the number circle.

The easiest way to understand the Resolve functions is to look at the illustrations in
Figure 3.8. In this figure, we focus on resolving left bounds with function Resolvelo, but
similar things apply to Resolvehi as well. In general, we always use the smallest possible
bound. When the result is uncertain, we have to be conservative and pick the greatest
possible bound in the given situation.

35

3 A Definition of Valids

Pred(p) p Succ(p)

slo = p

(a) Resolving exact left bound slo = p results in a closed left bound [p. This case is simple
as the result is perfectly representable by posit p.

Pred(p) p Succ(p)

slo = p+ ε

Resolvelo(slo) = pu

(b) Resolving left bound slo = p+ ε . The result is open interval (p, that is posit p with u-bit
set to 1. The u-bit indicates the range between p and its right neighbor Succ(p).

Pred(p) p Succ(p)

slo = p− ε

Resolvelo(slo) = Pred(p)u

(c) Resolving left bound slo = p− ε . The result has to be open interval (Pred(p), that is the
predecessor of posit p with u-bit set to 1. Because the u-bit always refers to the successor
of a given endpoint, we have to take a step back (function Succ) to resolve bound s back
to a posit endpoint.

Pred(p) p Succ(p)

?−ε +ε

Resolvelo(slo) = Pred(p)u

(d) Resolving left bound slo = p±ε . Because we are not at all sure about the concrete result,
we have to be conservative and resolve s to (Pred(p) as that covers all possibilities s =
p− ε , s = p and s = p+ ε .

Figure 3.8: Resolving error interval slo back to a left valid bound. Here we look at all
possible cases, that is s = p, s = p+ ε , s = p− ε and s± ε .

36

3.6 Addition Based on Error Intervals

3.6 Addition Based on Error Intervals

Armed with this knowledge, we can now define valid addition. Not only will the returned
bounds be correct, but they will also be as small as is reasonably possible. A caveat is
that this definition currently only works for regular valids. Irregular valids are a whole
different beast, not covered by our definition of valid arithmetic.

Algorithm 1. Given two non-special and regular valids v and w of matching valid type,
this algorithm computes sum s = v+w using error interval notation.

1. Rewrite v and w in error interval notation, viz.

v = [a,b] w = [c,d]. (3.37)

2. Compute lower bound slo and upper bound shi with rules familiar from traditional
interval arithmetic, that is compute

slo = a+ c shi = b+d (3.38)

in error interval notation that keeps track of rounding.

3. Convert lower and upper bound back to valid tiles using the respective Resolve func-
tion. We get

s = { Resolvelo(slo) ; Resolvehi(shi) }. (3.39)

as the final result.

To compute sum s = v+w, we first convert valids v and w to error interval representa-
tion. We do the math while tracking rounding information and then finally resolve both
start and end back to a standard valid. Using an intermediate step allows us to ensure that
the returned bound is only as big as it needs to be.

3.6.1 A Simple Example
To illustrate our definition of valid addition, we will take a look at two examples. Both
examples take place in the V4,1 environment (Appendix B). For the first example, we look
at the challenging task of computing

1+1 (3.40)

for which we will apply each of the three steps defined by Algorithm 1.

1. First we have to rewrite Equation 3.40 to error interval notation. We arrive at

1+1 = [1,1]+ [1,1] (3.41)

37

3 A Definition of Valids

because number 1 is perfectly representable with the given posit and as such valid
type.

2. We now apply the standard addition rule from interval arithmetic while keeping
track of rounding information.

slo = 1+1 = 1+ ε (3.42)
shi = 1+1 = 1+ ε (3.43)

In either case we round the mathematically correct result 2 down to posit 1. Unlike
with posit arithmetic, we do not discard this rounding information. Rather we keep
it for later use.

3. Finally, we have to resolve slo and shi back to a standard valid. We get

Resolvelo(1+ ε) = (1 (3.44)
Resolvehi(1+ ε) = Succ(1)) = 4) (3.45)

and as such the final result is

1+1 = (1,4). (3.46)

This first example shows that our definition of valid addition can be honest about the
result. With valids we do not have to present the user with a rounded value, rather we
return the smallest possible bound on the result.

3.6.2 A More Involved Example
Admittedly, even a hypothetical cell arithmetic could return the previous result. So let us
look at an example that genuinely requires the use of valids, viz.

(−4,1)+ [1,4] (3.47)

for which we will again run through all three steps of valid addition.

1. First we need to convert the open intervals to closed intervals. We get

(−4,1)+ [1,4] = [−4+ ε,1−η]+ [1,4] (3.48)

where ε and η are uncertain errors. We can already see that this example is going
to be a bit more involved.

2. Nevertheless, the basic algorithm is the same as we now apply the addition rules of

38

3.6 Addition Based on Error Intervals

traditional interval arithmetic.

slo =−4+ ε +1 =−4+1+ ε (3.49)
shi = 1−η +4 = 1+4−η (3.50)

Left sum slo and right sum shi need to be simplified before we can continue any
further. We begin by running the standard posit addition while tracking rounding.
We get

−4+1 =−4+ τ (rounded down from −3 to −4) (3.51)
1+4 = 4+µ (rounded down from 5 to 4) (3.52)

which plugged back into Equation 3.49 and Equation 3.50 yields

slo =−4+1+ ε =−4+ τ + ε =−4+ ε (3.53)
shi = 1+4+η = 4+µ−η = 4± ε (3.54)

where we also simplified the individual errors to just one term each. For the left
sum slo, we were able to collapse all errors into just +ε . In the case of the right
sum shi, we cannot know the sign of the specific error. The result could be left or
right of −4 on the number line.

3. This uncertainty is resolved when converting back to valid bounds in the final step.
We get

Resolvelo(slo) = (−4 (3.55)
Resolvehi(shi) = Succ(4)) = 16) (3.56)

and as such the final result of this example is

(−4,1)+ [1,4] = (−4,16) (3.57)

which given the low resolution valid type is the best answer we can give. It is also
the smallest interval in that the result does not contain any cells which cannot be
part of the result.

We finally managed to define valid addition. While our initial approach based on Type I
rules failed, using error interval notation proved to be productive. Error interval notation
allows us to return the smallest possible bound, including cases where we are unsure
about the concrete error.

39

3 A Definition of Valids

−x y 0 −y x

Figure 3.9: Taking the negation−x of some real value x is equivalent to mirroring value x
at the center of the number line.

−q −p 0 p q
v−v

(a) Taking the negation of regular valid v which moves both endpoints to the negative.

0

v−v

(b) Taking the negation of regular valid v which contains both negative and positive values.

Figure 3.10: Taking the negation −v of some regular valids v means mirroring each end-
point at the center of the number line.

3.7 Subtraction Based on Addition

From R we know that subtraction can be implemented in terms of addition, that is

x− y = x+(−y). (3.58)

We believe that it is possible to also apply this rule to valid arithmetic, at least for regular
valids. For this to work however we first have to think about what it means to take the
negation

−v (3.59)

of some given valid v. To gain an intuition for this problem, let us first look at the real
numbers. On R, taking the negation of some value x is equivalent to mirroring value x on
the number line (Figure 3.9). We find that we can apply this principle to valids as well.

Defintion 21. Given regular valid v = {s ; t} of some arbitrary valid type, we define its
negation to be −v = {−t ; −s}.

For negation of regular valid x = {s ; t}, we flip around and negate both tiles s and t.
Figure 3.10 illustrates valid negation with two examples. With negation in hand, we will
now be able to see that valid subtraction can be implemented in terms of valid addition.

40

3.8 Multiplication Based on Error Intervals

Matching
Rules

Valid arithmetic is an evolution of interval arithmetic and as such we again think about
the standard interval arithmetic rules. In traditional interval arithmetic, subtraction of
intervals x = [a,b] and y = [c,d] is defined to

x− y = [a,b]− [c,d] = [a−d,b− c] [29, p. 1048]. (3.60)

Applied to valid arithmetic, we see that our definition of valid negation maps nicely to
this formula as subtraction of valids v = {a;b} and w = {c;d} amounts to

v−w = v+(−w) = {a ; b}+{−d ; −c}= {a−d ; b− c}. (3.61)

Subtraction of valids can easily be implemented in terms of addition. As such we do
not have to think of a separate definition of subtraction. Instead we use our algorithm
for valid addition to define valid subtraction. The relationship between addition and
subtraction familiar from R also holds for valids.

3.8 Multiplication Based on Error Intervals

With addition and subtraction out of the way, we are left to work out multiplication and
division. Just as we defined addition on regular valids using error intervals, we can also
define multiplication. Again, we fall back to the core rules of interval arithmetic and
Type I unums. In particular, we base our definition of valid multiplication on the interval
rule

[a,b] · [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)] (3.62)

adopted from traditional interval arithmetic [29, p. 1049]. Interval multiplication amounts
to evaluating candidates

ab, ad, bc, bd (3.63)

and picking out the smallest and biggest one such that the returned interval contains all
possible solutions [13, p. 128].

Algorithm 2. Given two non-special and regular valids v and w of matching valid type,
this algorithm computes product m = v ·w using error interval notation.

1. Rewrite v and w in error interval notation, viz.

v = [a,b] w = [c,d]. (3.64)

2. Compute all candidates

ac, ad, bc, bd (3.65)

in error interval notation that keeps track of rounding.

41

3 A Definition of Valids

3. Set mlo to the minimum of all four candidates and mhi to the maximum of all can-
didates, that is

mlo = min(ac,ad,bc,bd), (3.66)
mhi = max(ac,ad,bc,bd). (3.67)

4. Convert lower and upper bound back to valid tiles using the respective Resolve func-
tion. We get

m = { Resolvelo(mlo) ; Resolvehi(mhi) }. (3.68)

as the final result.

The main differences compared to Algorithm 1 for addition are found in Step 2 and 3.
Here we first have to compute four candidates and then pick out the minimum and max-
imum. Aside from that, valid addition and multiplication work in very much the same
way. Because error interval notation allows us to keep track of rounding, we can exploit
posit arithmetic to do the heavy lifting.

3.8.1 Example
Again, we want to illustrate our algorithm with an example. We will keep it simple and
compute

m =
1
16
· 2 (3.69)

in the V4,1 environment (Appendix B).

1. We begin by applying Step 1, that is rewriting both arguments in terms of error
intervals. Here, we get

[1/16, 1/16] · [2,2]. (3.70)

2. As for the second step, we will now compute all candidates while keeping track of
rounding information, viz.

ac = ad = bc = bd =
1
4
− ε. (3.71)

3. In this simple example, all candidates are identical which also means that

mlo = mhi = max(ac,ad,bc,bd) = min(ac,ad,bc,bd) =
1
4
− ε. (3.72)

42

3.9 Valid Division Based on Multiplication

4. All that is left is that we have to resolve error intervals mlo and mhi to get the valid
result. We arrive at

m =

(
1
16

,
1
4

)
, (3.73)

the best possible result for our query in this low resolution environment.

We see that valid multiplication works in very much the same way as addition. The
only difference between the two is that for multiplication, we have to compute and sort
four candidates ac, ad, bc and bd. Converting to and from error interval notation remains
identical. Just like with valid addition, multiplication should not return valids that are
bigger than necessary.

3.9 Valid Division Based on Multiplication

The last remaining arithmetic operation is division. We spent less time on this opera-
tion than we would have liked. As such we cannot present a definition we are perfectly
confident in. To compute quotient

v
w

(3.74)

of valids arguments v and w, we actually compute

v
w
= v · 1

w
, (3.75)

that is we multiply quotient v with the reciprocal of dividend w. Computing the reciprocal
of some valid x is a special case and can be achieved with reasonable accuracy by taking
the reciprocal of the individual endpoints. That is if valid

x = {t ; s} (3.76)

is split in tiles t and s, then the reciprocal of x should be given by

1
x
=

{
1
t

;
1
s

}
. (3.77)

We are on thin ice here as above definition of valid division has not seen elaborate
testing in the limited time allotted to this thesis. We present it mostly as a suggestion for
future work on the topic. For what it is worth, above definition has served us well when
valid experiments required division.

43

3 A Definition of Valids

3.10 Summary

Starting with just the binary format, we presented an in-depth discussion of the valid
format. We know that valids are intervals that represent sets of cells. Cells in turn are
either concrete values p or intervals (r,s) of neighboring posits r and s. As there are no
illegal states a valid can be in, we found it necessary to differentiate between regular and
irregular valids. While regular valids are well-behaved intervals, irregular valids contain
special value±∞. From there, we defined equality and the less-than operation on valids.
Finally, we introduced a limited definition of valid arithmetic. It should provide a good
foundation for future research.

Valids are a necessary building block if we wish to provide an end of error to com-
puter arithmetic. Indeed with valids, we solve some of the fundamental problems with
computer arithmetic. Sure, a given valid type is still limited to some finite number of
states. But the u-bit allows valids to be honest about the result. Valids do exhibit jagged
accuracy as they are based on posit endpoints, but automatic tracking of rounding means
that programmers might not have to think about such problems. The only downside of
the core format is that valids contain duplicate patterns that represent the same values. As
there are many ways to represent the empty and full set, some operation require special
cases.

44

4 Implementation
With our definition of valids, we now have the full set of Type III formats available
for use. But no format is any good if it cannot be used in real world applications and
experiments. An implementation is required.

We contribute with a C++ implementation of Type III arithmetic based on the exist-
ing aarith [31] arbitrary precision number library. It provides a solid base for exper-
imentation and benchmarks. This chapter introduces our implementation, describes the
programming interface and internal design.

4.1 Existing Libraries

Since its introduction in 2017, various implementations of the posit and quire format
have been worked on. Indeed the “Survey of Posit Hardware and Software Development
Efforts” [26] lists more than 25 projects. Here we first take a look at four interesting
software libraries.

• The SoftPosit [32] library written in C acts as a reference implementation. It im-
plements posit and quire arithmetic. SoftPosit is officially endorsed by Gustafson
et al. [26] and bindings for various other programming languages exist [33, 34, 35].
That said, only a small set of posit parameters N and ES is supported.

• bfp [36] is an early C++ implementation of posit arithmetic. It aims to provide
a “human readable posit reference implementation” [36]. Indeed the bfp code is
easy to understand. But as bfp is currently missing proper rounding it does not
match the posit specification. Unlike many other C++ libraries, bfp does not use
template classes. Parameters N and ES are only evaluated during runtime.

• cppPosit [37] is a more recent C++ implementation of posit arithmetic. It includes
tuned implementations of standard posit types as well as a template posit class with
support for arbitrary parameters N and ES. Quire support is missing.

• The universal [38] library is written in C++ and under active development with
corporate backing. It supports a big number of template parameters N and ES for
both posit and quire arithmetic. universal does include a valid class, but it only
implements the rough binary format. Valid comparisons and arithmetic are not part
of universal.

Each library comes with distinct pros and cons. SoftPosit is fast and officially en-
dorsed, but limited to a small number of parameters N and ES. bfp is easy to understand,

45

4 Implementation

but development efforts seem to have to stopped before reaching proper rounding support.
Likewise, cppPosit provides good support for posit arithmetic, but quires and more ad-
vanced posit features are not in sight. universal is attractive because it sports corporate
backing and is under active development. Compared to the alternatives, it is also the most
flexible and feature-complete.

All introduced libraries focus on implementing Type III arithmetic. But our goal is to
compare IEEE floating points with novel posits and valids. What we need is a flexible
base on which we can build our tests and experiments. To provide this foundation, we
extended the aarith library to support our definitions of Type III arithmetic.

• aarith [31] is a C++ library for arbitrary precision arithmetic. It implements inte-
gers, fixed point numbers and IEEE-like floating points with arbitrary parameters.

As part of this thesis, we added support for posit, quire and valid arithmetic to aarith.
It is a fair to ask why one should bother with implementing posit arithmetic yet again.
Already many implementations of posits and quires exist. But combining different for-
mats in one library makes it easy to share code between experiments and benchmarks.
Code written for aarith can be configured to run with a big number of different formats.
Extending aarith lays down infrastructure that can pay off in the future.

4.2 Programming Interface

When implementing any number format there are two things to think about. On one hand,
we have to think about the programming interface exposed to users. On the other hand,
we have to think about the internal design of the library. We take a top-down approach
here. We first discuss the user interface and then the internals implementing that interface.

Template
Classes

aarith makes heavy use of C++ class templates [39, pp. 1-44]. A good example is the
aarith::floating point<E, M> type parameterized by exponent size E and mantissa
size M. As aarith already uses templates for its integer and floating point types, it comes
natural to use a similar approach for Type III arithmetic. In total, we extended the aarith
library with the following three types. They serve as the library’s programming interface
exposed to users.

• Class aarith::posit<N, ES> provides a posit type parameterized by width N and
exponent size ES.

• Class aarith::quire<N, ES> provides a quire type for use with the associated
posit type of matching parameters.

• Class aarith::valid<N, ES> provides a valid type. Under the hood, it uses
aarith::posit<N, ES> tiles as endpoints.

We only ever require parameters N and ES. Users only have to think about which posit
environment they wish to work with.

46

4.3 Intermediate Representations Simplify Arithmetic

Type
Aliases

While we support arbitrary parameters N and ES of type size t, we expect most users
to fall back to standard posit types as defined in the current draft of the posit standard [25,
p. 6]. For convenience, we provide type aliases

posit8, posit16, posit32, posit64

for the standard posit types as well as

quire8, quire16, quire32, quire64
valid8, valid16, valid32, valid64

for all associated quire and valid types. Instead of manually construing a given posit type,
users can simply refer back to these helpful aliases.

Explicit
Construc-
tion

Instantiating a given posit, quire or valid object is easy as we provide many conversion
operators from existing C++ and aarith types. We differentiate between two cases:
(1) Direct conversion and (2) explicit construction. Direct conversion means that the
value of a given number is preserved as well as possible. For example, constructing a
posit

posit16 p = posit16(15.92f);

will create a posit16 that approximates float value 15.92 as accurate as is possible with
the given posit type. This is intuitive and matches the behavior of standard C++ types,
for example when converting a double to int. Explicit construction on the other hand
means that we let users define the underlying fields of a given type. For example,

uinteger<32> bits = 0x12345;

posit32 q = posit32::from(bits);

constructs posit q from bit pattern bits. Meaning that bit pattern bits is imported as-is
and as such q does not represent value 0x12345 (i.e. 74565). Rather it is a bitwise copy
of bits into q. We use the ::from naming convention consistently throughout all of our
classes. As such users always know whether they are importing an existing number by
direct conversion or by explicit construction.

Each unum type overwrites the typical arithmetic operations, making it easy to port
existing code and write new one. The combination of easy to use but flexible class tem-
plates, convenient type aliases, explicit constructors and operator overloading makes for
an straightforward interface.

4.3 Intermediate Representations Simplify
Arithmetic

We will now investigate some under the hood details of our implementation. We start with
a discussion on how we use intermediate representations to simplify posit arithmetic.

47

4 Implementation

As an example we will look at posit multiplication, but similar things apply to other
operations as well.

Float Multi-
plication

The current draft of the posit standard does not dictate any particular algorithm for posit
multiplication [25]. What we can infer is that that multiplication of posits p and q should
result in a product pq rounded to the closest concrete posit value. How to achieve this is
left to the individual implementors. As posits have a lot in common with floating points,
adapting algorithms for float multiplications is the natural choice. Many such algorithms
exist [2, pp. 220–223, 3, pp. 103–105] and conceptually they are all very similar. Float
multiplication x · y first splits arguments x and y into exponents e and fractions f , viz.

x = fx · 2ex and y = fy · 2ey . (4.1)

We can then compute product x · y by multiplying the individual fractions and adding the
respective exponents, that is

fxy = fx · fy and exy = ex + ey. (4.2)

The final result is

x · y = fxy · 2exy. (4.3)

Both fraction and exponent are stored as standard integers. As such we can use standard
integer arithmetic to compute the two terms fxy and exy. In a final step, the result from
Equation 4.3 is converted back to a float encoding. Introducing an intermediate step
simplified the whole process.

Posit Multi-
plication

We use a similar approach for posit multiplication. The only difference is that we
cannot directly import the scale factor from a given posit as we did with floats. Because
posits encode their scale factor as a product of (1) regime and (2) explicit exponent, we
first combine both into a unified scale e. Fraction f works just as it does with floats and
as such can be imported directly from the posit.

Intermediate
Classes

Intermediate representations can be very useful and our software design reflects this.
The internal posit parameters class represents a posit decoded into parameters scale
and fraction. Arithmetic is done in parameterized form and only converted back to
plain posit for storage. This not only makes our code easier to understand, it also allows
us to reuse various logic for all four arithmetic operators. In particular, splitting up a given
posit into parameter and applying the necessary rounding is all handled by the posit -

parameters class. Other libraries such as universal take a similar approach, also
utilizing a dedicated class to represent a parameterized posit. The same applies to silicon.
Hardware implementations of posit arithmetic may use a dedicated posit extraction phase
that splits a given posit into scale and fraction [14, pp. 53-63].

Intermediate representations simplify our implementation of Type III arithmetic. Indi-
vidual steps required to perform typical arithmetic operations are separated into dedicated
classes. Structuring code in this way allows for easy reuse of complicated logic such as
decoding and rounding.

48

4.4 Reusing aarith Datatypes

4.4 Reusing aarith Datatypes

aarith already comes with support for many different arithmetic types. In particular, the
current development version supports integer, uinteger, fixed point and float-

ing point arithmetic. We were able to greatly take advantage of these existing classes.
For example, the posit type is made up of just one uinteger of matching width. Typical
bitwise operations, comparisons and the two’s complement are all provided by aarith.

Quire
Implemen-
tation

As for the posit and valid classes, most logic had to be implemented from scratch.
But this was not the case for the quire. Recall that the quire is nothing but a fixed
point accumulator for posit arithmetic. As aarith already provides a bare-bones imple-
mentation of fixed point numbers, the majority of operations are simply deferred to the
fixed point class. This goes a long way. For example, the logic for printing out the
value of a given posit p first converts p to a quire representation and then reuses the code
for printing fixed point numbers. We only had to write the annoying string conversion
code once for fixed point. String conversion for the quire and as such for posits come for
free. Throughout our implementation we reuse existing aarith code to great effect.

4.5 Keeping Track of Rounding

Rounding is an important part of posit arithmetic and getting it right can be tricky. In
addition to getting correctly rounded posit results, we also need to be able to track round-
ing. Remember how our definition of valid arithmetic relies on error interval notation. To
get it right, we need to be aware of rounding error introduced by posit arithmetic.

Additional
Bits For
Rounding

All posit arithmetic is done in parameterized form. But the underlying representation
split in fraction and scale actually uses more bits than strictly speaking necessary
to represent the plain posit. Just as quires circumvent the rounding problem by using
high resolutions, our posit parameters does all arithmetic with an increased number
of bits. Converting back to plain posit means cutting off the superfluous bits. If the
cut bits were all zero, we know that the result was accurate enough in terms of posit
arithmetic. If the cut off bits were non-zero, we round the result as necessary. This is an
approach adapted from code in the universal library which also uses additional bits to
keep track of rounding.

Tracking
Rounding

What universal does not do to our knowledge is that our implementation exposes
rounding information to upper layers. In our aarith-based implementation, converting
back from parameterized form to posit returns not just a plain posit, but also rounding
information encoded in a rounding event, viz.

enum class rounding_event

{

NOT_ROUNDED,

ROUNDED_DOWN,

ROUNDED_UP

};

49

4 Implementation

1 template<size_t nbits, size_t es>

2 posit<nbits, es> sin(posit<nbits, es> x) {

3 return posit<nbits, es>(std::sin(double(x)));

4 }

Listing 1: Code from the universal arithmetic library for computing the sine of a given
posit x. File trigonometry.hpp, revision 314b1c80.

which can be used when necessary. For example, we take advantage of rounding in-
formation in our implementation of valid arithmetic. When rounding information is not
required (e.g. for plain posit arithmetic), the rounding event is discarded.

Rounding can be tricky to get right. An easy solution inspired by universal is to
compute the result in increased resolution and then evaluate the cut off bits. Unlike
universal, we do not always discard rounding information. This allows us to keep
rounding into account when necessary, for example when implementing valid arithmetic.

4.6 Mathematical Functions

Mandated
Functions

The draft posit standard lists a long number of mathematical functions a posit environ-
ment is expected to support [25, pp. 9-10]. The list includes simple operations such as
the absolute value or floor and ceil of a given posit p. Our aarith-based implementa-
tion supports many of these operations. The draft also mandates various more advanced
functions. This includes the square root, logarithms and trigonometric functions. Our
implementation supports only a subset of these more advanced operations. In particular,
our port of aarith supports the sqrt, log, sin, cos and tan operations on posits.

Delegating
To Floats

Implementing such functions in an efficient and accurate manner is the topic for pub-
lications of their own. Notably, universal currently delegates trigonometric operations
on posits to their floating point counterparts. Listing 1 illustrates this with an example
from the universal code base. For low resolution posit environments, this should re-
sult in accurate and quick results. But when N is big, significant rounding error may be
introduced. SoftPosit previously experimented with a similar approach to universal,
but currently offers no support at all for the trigonometric functions. Despite being an
officially sanctioned implementation of posit arithmetic, SoftPosit is currently missing
most of the mathematical functions mandated by the draft standard.

Custom
Code For
Posits

Our aarith-based implementation favors custom algorithms that natively support posit
arithmetic. This does mean added work for us. But because we want our implementation
of Type III arithmetic to (1) be independent of floating point and (2) support arbitrary
parameters N and ES, custom implementations are a necessity. In total, we implemented
the following five functions:

• Function sqrt(p) computes the square root of a given posit p. We iterate using
the Newton-Raphson method [40] until the result converges to a fixed value.

50

4.7 Testing Strategy

• Function log(p) computes the natural logarithm of posit argument p. To com-
pute this function, we use Borchardt’s algorithm [41], an iterative approach with a
bounded number of maximum iterations.

• sin(p) computes the sine of posit argument p in radians. We use series

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . . [42, p. 82] (4.4)

to approximate the result. This is no perfect solution. Equation 4.4 involves the
factorial function y! which greatly limits the number of terms we can evaluate as y!
quickly grows to be very large.

• Function cos(p) computes the cosine of posit argument p in radians. Our imple-
mentation uses the equality

cos(x) = sin
(

π

2
− x
)

[42, p. 45], (4.5)

deferring computation to our implementation of sin.

• Function tan(p) computes the tangent of posit argument p in radians. We use the
equality

tan(x) =
sin(x)
cos(x)

[42, p. 44], (4.6)

deferring computation to our implementations of sin and cos.

The main disadvantage of our approach has to be performance. Compared to highly
optimized routines readily available for floating point arithmetic, our custom code will
be much slower. But as we are interested in evaluating Type III arithmetic itself, proper
implementations of the mathematical functions are required.

While our implementation already supports various mathematical functions, we are far
from done. Many mathematical operations mandated by the draft standard are currently
missing from aarith. Providing a full posit environment involves way more than just
implementing plain arithmetic.

4.7 Testing Strategy

Test Driven
Develop-
ment

The aarith project makes heavy use of automated tests. They ensure that the implemen-
tation behaves as expected. We continued this good tradition, often working in a genuine
test driven development fashion [43]. Test driven development typically means defining
automated test cases before working on the actual implementation. A good idea in theory,
it often can be difficult to apply in complex real world applications. Luckily, this is not
the case for our aarith-based implementation. While aarith offers support for many

51

4 Implementation

different formats, all operations are small in scope and well-defined . Writing a test case
for addition is as simple as checking whether our code returns the correct result for the
given arguments.

Exhaustive
Tests

As our implementation of posit arithmetic is certainly not the first one, we have a wide
array of existing libraries to check against. Indeed our port of aarith contains exhaus-
tive tests for addition, subtraction, multiplication and division for the low resolution P8,1
and P8,2 types. Solutions provided by SoftPosit and universal serve as a reference.
These tests are exhaustive in that they test every possible combination of arguments for
the given type. Despite being exhaustive, running these tests is still reasonably quick. We
find that on a contemporary workstation, each individual test takes less than ten seconds
to complete. As such it is not unreasonable to execute such exhaustive tests with every
test run. A worthwhile investment as exhaustive testing provides much needed protection
against unexpected regressions.

Randomized
Tests

We also run tests for higher resolution types. Unfortunately the exponential number
of values to consider makes running exhaustive tests unfeasible in these cases. As an
alternative, we opt for a randomized approach where we randomly pick a number of
arguments and then check whether aarith matches the results provided by the Soft-

Posit reference. Combined with manually defined tests that check certain edge cases,
we are quite confident that our implementation of posit arithmetic matches the results of
SoftPosit and universal.

Valid TestsTesting valid arithmetic is more difficult as no matching implementation is available.
What we found useful during debugging was to generate CSV tables that list the results
of all possible outputs for a given operation. We would then manually scan the table for
obviously wrong results. For each mistake that caught our attention, we created a manual
test case. In addition to these manual tests, we also provide some programmatically
generated test cases. In particular, we run exhaustive tests where for each combination of
posit arguments p and q we check whether valid arithmetic returns a reasonable bound
on the result. Our current implementation of valids certainly matches all test cases we
provide and does so for a great number of parameters N and ES.

In summary, projects like aarith really do lend themselves to exhaustive and auto-
mated testing. Exhaustive tests show that our posit implementation matches the Soft-

Posit and universal reference for low resolution types. Where exhaustive testing is
not feasible, we favor randomized tests. Testing valid code proved more challenging as
no reference is available.

4.8 Summary

This chapter first introduced various existing implementations of posit arithmetic. Even
so, we decided to extend the aarith library with support for Type III arithmetic. It
allows us to combine a big number of formats in one library. The programming interface
exposed to users is composed of the three types posit, quire and valid. We overload
the typical arithmetic operations, making them easy to use. While not yet complete, our
implementation already provides a number of mathematical functions such as sqrt, log

52

4.8 Summary

and sin. All of which are missing even in the SoftPosit reference implementation.
To ensure that our implementation returns correct results, extensive testing is used. This
includes exhaustive tests for small resolution posit types.

53

5 Evaluation of the Implementation

Now we want to take a quick look at how our aarith-based implementation compares
to some other existing implementations. In particular, we will compare our implemen-
tation to other projects such as universal and SoftPosit. We are interested both in
performance as well as correctness. Performance is about how quickly the given imple-
mentations can run some benchmark. Correctness is about whether the returned result
conforms to the spec. While our aarith-based implementation was never designed with
particular performance goals in mind, we find that it is competitive when compared to an
implementation with similar features.

Compared
Libraries

The investigated libraries should already be familiar from Section 4.1. We compare
our own aarith-based implementation to SoftPosit and universal as they match
the most recent definition of the posit standard. We also include the SoftPosit.jl

library [35] in our first benchmark. SoftPosit.jl is a wrapper around SoftPosit

code written in the Julia programming language. While it builds on the foundation of
SoftPosit, it supports more types than just plain SoftPosit.

Test
Hardware

All benchmarks in this section were run on a workstation with an AMD EPYC 7302P
16 core processor and 128 GiB of RAM. We ran Linux kernel version 4.19 and all bench-
mark code was compiled with GCC version 11.1.0.

5.1 Standard Arithmetic: Add, Sub, Mul, Div

Test Setup The first benchmark is simple, but important. Here we compare the results of all standard
arithmetic operators for all possible combinations of P8,1 posit arguments. In particu-
lar, we compared the results and performance of aarith, universal, SoftPosit and
SoftPosit.jl. For this experiment, we would have preferred to use the standardized
P8,2 type. But as of writing, SoftPosit only supports 8 bit posits with exactly one expo-
nent bit, limiting us to the P8,1 type.

Correctness All four implementations returned matching results; a good indication that the all li-
braries do correct posit arithmetic. As far as correctness is concerned, all libraries pass
this test. But in terms of performance, there are notable differences between the compared
implementations. Figure 5.1 plots our findings.

Performance
Differences

SoftPosit, written in C, easily beats the C++ competition when optimizations are
disabled during compilation. SoftPosit is a rather limited implementation of Type III
arithmetic, each supported type can be manually tuned. As such it should not be sur-
prising that SoftPosit beats the slower but more flexible implementations provided by
us and universal. But in most real world applications, there is no reason to disable
compiler optimizations. In this case, SoftPosit still performs well but the difference is

55

5 Evaluation of the Implementation

add sub mul div
0

1,000

2,000

3,000

4,000

Operation

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[m
s]

aarith-based (ours)
universal
SoftPosit
SoftPosit.jl

(a) Running the benchmark without com-
piler optimizations. Less is better.

add sub mul div
0

20

40

60

80

100

Operation

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[m
s]

aarith-based (ours)
universal
SoftPosit

(b) Running the benchmark with the highest
optimization level. Less is better.

Figure 5.1: Comparing the runtime when exhaustively testing all four arithmetic opera-
tions in a P8,1 environment. Tests were run a total of four times, we plot the
average execution time over all four runs. Because optimizations are hard
to control for the interpreted Julia code, SoftPosit.jl only appears in the
unoptimized case.

way less pronounced. In fact, we find that our aarith-based implementation provides
quicker addition and subtraction than SoftPosit in this case.

Both C++ libraries compare about equally well when compiler optimizations are en-
abled. While our aarith-based implementation provides quicker result for addition
and subtraction, universal performs better when it comes to division. Finally, Soft-
Posit.jl performs about equally bad for all four operations. We find it likely that this is
related to the high startup cost introduced by the Julia runtime [44, pp. 45-49]. However
we did not investigate this point any further and as such cannot make a definite statement.

Compiler
Optimiza-
tions

aarith greatly benefits from compiler optimizations. Without optimizations, aarith
is quite the slug compared to universal. But enabling compiler optimizations levels the
playing field, resulting in equal or better performance of our aarith-based implementa-
tion compared to universal and even SoftPosit.

5.2 Mathematical Functions

Our aarith-based implementation supports some of the required mathematical functions
such as sin, cos, tan and log. Unlike other libraries in this comparison, we do not rely
on the system’s floating point unit to perform these operations, rather we provide imple-
mentations of our own. In this section, we take a look at how our naive implementations
perform compared to the competition.

Test SetupFor this example, we compared the accuracy of functions sin, cos, tan, log and sqrt

provided by universal and our aarith-based implementation with a high resolution
reference provided by apfloat [45]. apfloat is an arbitrary precision floating point

56

5.2 Mathematical Functions

8 16 32 64 128 256
0

10

20

30

40

N

Av
er

ag
e

D
ig

its
of

A
cc

ur
ac

y
aarith::posit<N, 2> (ours)
universal::posit<N, 2>

(a) Function sin.

8 16 32 64 128 256
0

5

10

15

20

N

Av
er

ag
e

D
ig

its
of

A
cc

ur
ac

y

aarith::posit<N, 2> (ours)
universal::posit<N, 2>

(b) Function cos.

8 16 32 64 128 256
0

5

10

15

N

Av
er

ag
e

D
ig

its
of

A
cc

ur
ac

y

aarith::posit<N, 2> (ours)
universal::posit<N, 2>

(c) Function tan.

8 16 32 64 128 256
0

5

10

15

N

Av
er

ag
e

D
ig

its
of

A
cc

ur
ac

y

aarith::posit<N, 2> (ours)
universal::posit<N, 2>

(d) Function log.

8 16 32 64 128 256
0

10

20

30

40

N

Av
er

ag
e

D
ig

its
of

A
cc

ur
ac

y

aarith::posit<N, 2> (ours)
universal::posit<N, 2>

(e) Function sqrt.

Figure 5.2: Comparing the accuracy of our custom implementations of the mathematical
functions with that of universal. In this test, we ran each function with
10,000 random arguments and compared their accuracy to a high resolution
reference. Our aarith-based implementation is competitive and even supe-
rior in high resolutions. More is better.

57

5 Evaluation of the Implementation

library that includes custom implementations of above functions that scale to arbitrary
accuracy. For each given function, we picked a random set of 10,000 argument in a sen-
sible range, comparing the results of our aarith-based implementation and universal

with the high resolution apfloat reference.
Performance
Differences

Little can be said about performance aside that universal eclipses our aarith-based
implementation. universal is multiple orders of magnitudes faster than our code when
computing above benchmark. But these results are not at all surprising. Remember that
universal implements the respective mathematical functions by deferring them to float-
ing point arithmetic (Section 4.6). Deferring computation of the mathematical functions
to the system’s floating point libraries and hardware exploits decades of optimization
work. As such it should not be surprising that our aarith based implementation per-
forms much worse.

CorrectnessComparing the returned results of our aarith-based implementation and universal

with the apfloat reference reveals the big problem with implementations that rely on
double arithmetic. Figure 5.2 plots the results for a variety of standard posit types. For
the lower resolution types up to width N = 64, both our aarith-based implementation
and universal perform about equally well. An indicator that double floating point
arithmetic is roughly equivalent to 64 bit posit arithmetic. But once we reach higher
resolutions, our implementations of sin, log and sqrt outperform the low resolution
solutions provided by universal. 64 bit floating point simply is not enough when we
reach bigger N. We see that our implementations of the mathematical functions can
provide superior answers compared to universal.

On the downside, our implementations of cos and tan only show comparable but
not superior results to universal. In our code, cos and tan defer computation back
to sin and we believe this is the problem as accuracy is lost in intermediate steps. A
superior solution would most likely not defer these functions to sin but rather find fitting
approximations specific for cos and tan. Nevertheless, compared to universal our
results are competitive.

Deterministic
Functions

The current draft of the posit standard generally mandates no particular algorithms
for implementing mathematical functions. It only requires implementations to return
an result that is as accurate as possible, rounded according to the rules of posit arith-
metic. Consequence being that given some mathematical function f, there only ever is
one concrete solution y = f(p) for argument p that is strictly speaking acceptable. Our
aarith-based implementation was not developed with this constraint in mind. Rather we
favored easy to write implementations that provide approximations of the given function,
ready for use in first experiments. But neither can universal make any such guarantees
as it only delegates computation to the double type. It is up to future research to pro-
vide efficient and accurate algorithms for all mandated mathematical functions that are
deterministic across implementations.

In summary, our implementations of the mathematical functions are orders of magni-
tude slower than their double counterparts. But despite their simple design, our imple-
mentations of sin, log and sqrt return more accurate results in high resolutions when
compared to the competition. Functions cos and tan require further improvement.

58

5.3 Overhead Introduced By Valid Arithmetic

8 16 32 64
0

20

40

60

80

100

N

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[se
c]

aarith::posit<N, 2>
aarith::valid<N, 2>

(a) Running the benchmark without com-
piler optimizations. Less is better.

8 16 32 64
0

1

2

3

4

5

N

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[se
c]

aarith::posit<N, 2>
aarith::valid<N, 2>

(b) Running the benchmark with the highest
optimization level. Less is better.

Figure 5.3: Running one million randomized additions with both posits and valids of dif-
ferent widths N. Valid arithmetic about doubles the required time.

8 16 32 64
0

200

400

600

N

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[se
c]

aarith::posit<N, 2>
aarith::valid<N, 2>

(a) Running the benchmark without com-
piler optimizations. Less is better.

8 16 32 64
0

10

20

30

40

N

Av
er

ag
e

Ex
ec

ut
io

n
T

im
e

[se
c]

aarith::posit<N, 2>
aarith::valid<N, 2>

(b) Running the benchmark with the highest
optimization level. Less is better.

Figure 5.4: Running one million randomized multiplications with both posits and valids
of different widths N. In the worst case, valid arithmetic takes about four
times as long as posit arithmetic to complete the given operations.

5.3 Overhead Introduced By Valid Arithmetic

Test Setup Another metric we were interested in is the overhead introduced by valid arithmetic com-
pared to posit arithmetic. No doubt valid arithmetic involves more individual steps, but
the question is to what extend this makes a difference. To find out, we set up a test where
we ran a total of 1,000,000 randomized posit and valid additions and multiplications. The
results for addition are plotted in Figure 5.3, the results for multiplication in Figure 5.4.

Performance
Differences

Our results are encouraging. Valids are not particularly slower than comparable posit
arithmetic. In particular, valid addition takes about two times as long as posit addition

59

5 Evaluation of the Implementation

while valid multiplication takes about four times as long as the equivalent operation on
plain posits. Judging from these numbers, it actually appears to be the case that posit
arithmetic is the dominating factor that determines the performance of valid arithmetic.
Remember that valid addition involves two posit additions for left bound and right bound.
Similarly, remember that valid multiplication involves evaluating four posit candidates
from which we have to pick the minimum and maximum value. That fits exactly with our
findings.

5.4 Summary

Overall, we are quite pleased with our implementation of unum arithmetic. Despite not
being tuned for performance, compiler optimizations result in competitive performance
with projects such as universal. Mathematical functions are the only real bottleneck.
But we are willing to pay that price as our implementations of sin, log and sqrt can be
much more accurate.

60

6 Evaluating Type III Unum
Arithmetic

Finally we have the required tools to evaluate Type III arithmetic. This chapter describes
various benchmarks and experiments based on our version of the aarith library. We
try to find out how Type III arithmetic competes with traditional floating point. Where
possible we investigate how valids can help in finding accurate results.

Standard
Types

Both floating point and posit standards come with a suggested list of standard param-
eters to use with the respective types [11, p. 8, 25, p. 6]. Appendix C gives on overview
of what we consider standard types ready for quick review. Throughout this evaluation,
we typically focus on the standard types as they are most likely to be used by the prac-
ticing programmer. So for example a “16 bit posit” is a standard P16,2 posit type as listed
in Appendix C. When non-standard parameters are required, they are explicitly listed as
such.

6.1 Problems From Unum Literature

The End of Error [13] proposes Type I unums and has various examples to back up its
case. But how does Type III arithmetic compare to its original successor? As we will see,
posits fail to provide the correct results as given by Type I arithmetic. Posits are more
like traditional floating points than they are like the original unums.

Problem 1. Iterate

xi+2 = 111− 1130
xi+1

+
3000

xi xi+1
(6.1)

starting with x0 = 2 and x1 = −4. The stable result is supposed to be xi = 6, but floats
fail to provide that answer [13, pp. 173].

Values Do
Not Fit

Iterating Equation 6.1 with respective initial values x0 = 2 and x1− 4 is supposed to
yield convergence at xi = 6. Figure 6.1 plots the first 50 iteration steps for various floating
point and posit types. We see that both floats and posits do approach the correct result, but
eventually jump to a wrong conclusion. The reason in either case is that neither floating
points nor posits can represent the fractions in Equation 6.1 correctly. As an example,
consider the first fraction,

1130
xi+1

(6.2)

61

6 Evaluating Type III Unum Arithmetic

and assume that we have somehow arrived at the point where xi+1 reached the desired
result of xi+1 = 6. While both numerator 1130 and denominator 6 are perfectly repre-
sentable with either 32 bit floats or posits, fraction

1130
6

= 188.3 (6.3)

on the other hand is not. The result will not be correct and as such true convergence
at xi = 6 can never be reached. Type I unums adopt their accuracy to adapt specific
needs, but posits are fixed in size and parameters. As such posits suffer from the same
problems as traditional floating point arithmetic.

Valids As
Warnings

The story hardly gets any better when attempting to solve this problem with valids.
Figure 6.2 plots the results for four standard valid types. Again, the results approach
the correct value, but at some point all valids diverge so much that computation has to
halt as xi reaches the full set ◦. Valids are no magic solution to this problem. However,
considering that valids are more of a debugging tool, they did provide some insight.
While both floats and posits happily converged at an incorrect value, valids tell us that
something is amiss, requiring further investigation.

Problem 1 shows that posits can suffer from the same problems as floating points.
Valids can warn the programmer about something going wrong, but finding the problem
will still require conventional debugging. In this concrete experiment, Type III arithmetic
is a genuine regression compared to Type I unums.

Problem 2. Solve the following systems of equations.

0.25510582x+0.52746197y = 0.79981812 (6.4)
0.80143857x+1.65707065y = 2.51270273 (6.5)

This problem is referred to as “Bailey’s Numerical Nightmare” and the expected result
is x =−1 and y = 2 [13, pp. 184].

We ran Problem 2 with the full set of standard floating point and posit types, from 8 up
to 128 bits in width. The results are listed in Table 6.1. The table shows that neither low
nor high precision environments provide satisfactory results. Again we have to conclude
that posit arithmetic is a genuine regression compared to original Type I unum arithmetic.
Neither floating points nor posits allow us to write down a naive solution for Problem 2
that results in acceptable results.

Detecting
Errors
Manually

When solving linear equations, a common way to check the results is to plug in the
computed solutions into the original equations. Plugging in the computed values for x
and y as listed in Table 6.1 into Equations 6.4 and 6.5 yields vastly different results for
most types. At the very least, programmers performing this additional sanity check will
be alerted of potential errors. But even this can be deceiving. Solving above system of
equations with 64 bit posits returns

x = 0.317808 · · · and y = 1.358904 · · · . (6.6)

62

6.1 Problems From Unum Literature

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(a) Half precision float.

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(b) Single precision float.

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(c) Double precision float.

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(d) Quad precision float.

0 10 20 30 40 50

0

50

100

150

200

Iteration Step i

Va
lu

e
x i

actual
expected

(e) P16,2 posit.

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(f) P32,2 posit.

0 10 20 30 40 50

0

50

100

150

Iteration Step i

Va
lu

e
x i

actual
expected

(g) P64,2 posit.

0 10 20 30 40 50

−400

−200

0

Iteration Step i

Va
lu

e
x i

actual
expected

(h) P128,2 posit.

Figure 6.1: Iterating Equation 6.1 with different data types. The correct result is xi = 6,
indicated by a blue line. but even high resolution floating point and posit
types eventually converge at the wrong result.

63

6 Evaluating Type III Unum Arithmetic

0 10 20 30 40 50
−200

−100

0

100

200

Iteration Step i

Va
lu

e
x i

low bound
high bound
expected

(a) V16,2 valid.

0 10 20 30 40 50
−200

−100

0

100

200

Iteration Step i

Va
lu

e
x i

low bound
high bound
expected

(b) V32,2 valid.

0 10 20 30 40 50
−200

−100

0

100

200

Iteration Step i

Va
lu

e
x i

low bound
high bound
expected

(c) V64,2 valid.

0 10 20 30 40 50
−200

−100

0

100

200

Iteration Step i

Va
lu

e
x i

low bound
high bound
expected

(d) V128,2 valid.

Figure 6.2: Iterating Equation 6.1 with valid data types of different lengths. The results
are disappointing as computation suddenly returns a huge bound and then
aborts, indicated by the sudden jump in upper and lower bounds. The ex-
pected result xi = 6 is plotted in blue.

64

6.1 Problems From Unum Literature

Type x y Type x y

expected −1 2 expected −1 2
P8,2 NaR NaR quarter precision 4 2
P16,2 4 0 half precision 0 2
P32,2 4 0 single precision NaN NaN
P64,2 0.317808 · · · 1.358904 · · · double precision 0 1.333333 · · ·
P128,2 0.323285 · · · 1.359995 · · · quad precision 0.3232856 · · · 1.359996 · · ·

Table 6.1: Results of Bailey’s Numerical Nightmare (Problem 2) computed with various
floating point and posit types. Neither floating points nor posits come close to
giving reliable answers.

Type x1 x2 Type x1 x2

expected −0.02001 · · · −33.3133 · · · expected −0.02001 · · · −33.3133 · · ·
P8,2 0 −32 quarter precision −16 −16
P16,2 −0.04165 · · · −33.2812 · · · half precision −0.02081 · · · −33.3125 · · ·
P32,2 −0.02001 · · · −33.3133 · · · single precision −0.02001 · · · −33.3133 · · ·
P64,2 −0.02001 · · · −33.3133 · · · double precision −0.02001 · · · −33.3133 · · ·

Table 6.2: Finding the roots of polynomial given by Equation 6.9 (Problem 3) with vari-
ous floating point and posit types.

Plugging in these values for x and y into the original system leaves us with

0.25510582 ·0.317808 · · ·+0.52746197 ·1.358904 · · ·= 0.7978449 · · · (6.7)
0.80143857 ·0.317808 · · ·+1.65707065 ·1.358904 · · ·= 2.50650388 · · · (6.8)

which looks awfully close to the expected results, even though solutions x and y are totally
wrong. One can make a case here that the 64 bit posit type is actually the most dangerous
because it gives a wrong sense of security. A less controversial conclusion has to be that
Problem 2 is solvable with neither floating point nor posit arithmetic. Without thinking
about the particular formats and proper numerical analysis, Problem 2 is not solvable in
either format. A regression compared to original Type I unums.

Problem 3. Given polynomial

f (x) = 3x2 +100x+2, (6.9)

find the roots of f , that is find those x1,2 such that f (x) = 0 using the well-known solution

x1,2 =
−b±

√
b2−4ac

2a
. (6.10)

The correct solutions are x1 = −0.0200120 · · · and x2 = −33.313321 · · · . Type I unums

65

6 Evaluating Type III Unum Arithmetic

Type x1 x2

expected −0.0200120 · · · −33.313321 · · ·
V8,2 (−8,13) (−56,−16)
V16,2 (−0.05212 · · · ,−0.03128 · · ·) (−33.40625,−33.25)
V32,2 (−0.02001 · · · ,−0.02001 · · ·) (−33.31332 · · · ,−33.31332 · · ·)
V64,2 (−0.02001 · · · ,−0.02001 · · ·) (−33.31332 · · · ,−33.31332 · · ·)

Table 6.3: Finding the roots of polynomial given by Equation 6.9 (Problem 3) with valid
arithmetic. The relatively big bounds for the 8 bit types indicate that given
computation could benefit from more accuracy. On the other hand, the bounds
for 32 bit arithmetic (and above) return very tight bounds, hinting at that suffi-
cient accuracy has been reached.

handle this well as they can adapt their resolution to represent small values [13, pp. 181].

Equation 6.9 looks like harmless high school math, but the difficulty here is that the
roots of f are difficult to represent. Table 6.2 shows the resulting values for various float-
ing point and valid types. Attempting to solve this problem with short 8 or 16 bit types
will not always return correct results. That said, even at 32 bits, both floats and posits
perform well. Floating points have a slight advantage as the standardized half precision
float beats the standard 16 bit posit. The issue we want to illustrate with this example is
that developers must not underestimate the requirements in respect to accuracy set by a
problem. It would be nice if there were an automated way to detect such inaccuracies.

Valids Are
Good For
Short Com-
putations

Perhaps valids can help, which is why we also solved Problem 3 using valid arithmetic.
The resulting values are listed in Table 6.3 and in this particular case, valids do shine.
While the low resolution V8,2 type results in quite big bounds, the higher resolution types
return increasingly small bounds. Indeed, one could argue that in this particular case,
valids made complicated error analysis redundant. We can simply keep increasing the
number of bits until we arrive at bounds we deem satisfactory. The reason why valids
work so well here is that computing roots x1 and x2 does not involve a lot of steps. As
such the valid bounds do not grow to unacceptable levels, rather they represent a good
estimation of the result. We see that for debugging individual steps or short computations,
valids can be helpful.

SummaryType I unums were supposed to be a silver bullet to rounding errors in computer arith-
metic. But reality is never that easy. Now at its third iteration, unum arithmetic has
become fast and easy to implement. But this comes at the cost of suffering from similar
problems as floating points: Problems 1 and 2 were solvable with neither floating point
nor posits. Similarly, Problem 3 suffered from rounding errors on low resolutions. But
it is not all bad. In particular, for short computations such as Problem 3, valids can be a
useful tool. And for what it is worth, posits are competitive, performing about as well as
floating points.

66

6.2 Problems From Posit Literature

a

ac

Figure 6.3: A not particularly thin “very thin triangle problem” (Problem 4). Computing
the area of such triangles with floating point can be surprisingly difficult.

6.2 Problems From Posit Literature

Naturally posit literature comes with examples of its own. We re-evaluated some of these
examples. While we generally were able to reproduce previous experiments, our results
can also be looked at in a different light.

Problem 4. Solve the “Very Thin Triangle Problem” [23, pp. 75] which asks us to find
the area of some triangle with sides a,b,c where two of the sides b and c are barely longer
than half of the longest side a (Figure 6.3). The problem was originally proposed as an
example where floats perform very poorly.

For our discussion, we first reproduced the thin triangle problem for a triangle with
sides

a = 7 and b = c = 7+3 ·2−111 (6.11)

as described in posit literature [23, pp. 75]. Note that sides b and c are only slightly longer
than 7. Representing such values is hard, even with standard 128 bit data types. Running
this computation with standard floating point and posit types results in completely wrong
and unusable results. However, Gustafson points out that this particular version of the
thin triangle problem can be solved with the P128,7 posit type [23, pp. 75]. This is true,
but it remains questionable whether this solution is a practical one. A 128 bit posit with
ES = 7 results in a posit type with an useed of

U = 227
= 340282366920938463463374607431768211456≈ 1038 (6.12)

which no doubt is very large indeed. So large in fact that it is hard to imagine hardware
vendors to ever support this particular posit type as a standard feature, leaving us with
software arithmetic as the only alternative on general purpose systems.

Parameters
Are Power

What Problem 4 shows is that there is power in letting users pick precision and param-
eters. While hardware will probably continue to be limited to a small number of standard
resolution types, augmenting those default types with arbitrary software arithmetic can
be useful in concrete applications.

Problem 5. The “LINPACK Benchmark” can be solved accurately with posit arith-
metic [24, pp. 85]. Reconstruct this experiment and look at why exactly this is the case.

LINPACK is a popular measure of floating point performance run on clusters and work-
stations alike [46]. At its core, LINPACK solves big systems of linear equations, a typical

67

6 Evaluating Type III Unum Arithmetic

workload in the field of scientific computation and simulation. We could use a posit port
of LINPACK as a performance measure, but this is not the focus here. Rather we will
discuss the accuracies involved in this benchmark.

Fused Dot
Product

Gustafson et al note that the LINPACK benchmark run with double precision floating
points actually returns inaccurate results. Instead of the mathematically correct value 1,
the results are values ever so slightly off from 1. This is not the case for posits as even
32 bit posit arithmetic can solve this problem accurately [23, pp. 88]. The reason for
this is that a posit port of the LINPACK benchmark can take advantage of the quire dot
product to maintain accuracy. The quire is introduced as a fundamental aspect of posit
arithmetic, it is natural to use it for this application.

Floating
Point
Quires

For comparison, we ported a version of the LINPACK benchmark to use naive posit
arithmetic ourselves, that is posit arithmetic without the use of quires. Without quires,
posit arithmetic suffer from similar problems as floats, returning inaccurate results, even
for high resolutions. The quire is advertised as a fundamental part of posit arithmetic
and as such must not be overlooked. But the elephant in the room is that quires are not
exclusive to posits. Indeed it is easy to imagine a quire type based on floating points that
works in very much the same way. In respect to Problem 5, we have to conclude that
quires can provide surprisingly accurate results. However we also must not forget that
the fused dot product is not exclusive to posit arithmetic.

SummaryIn general, we were able to reproduce previous examples from posit literature. But
either example can also be looked at in a different light. It is true that the thin triangle
problem is solvable with an ES = 7 posit type. But it is unreasonable to expect hardware
makers to ever support this format as a standard feature. Similarly, LINPACK can be
computed accurately with quires, but the idea of quires or an extended fused dot product
must not be constrained to posits.

6.3 Decimal Loss of a Unary Function

We now compare the accuracy of a unary function in low resolution floating point and
posit environments. These examples have previously been used as a selling point for
posit arithmetic [24, pp. 78]. While posits do perform better in this benchmark, erratic
distribution of error means that neither format provides strong guarantees.

Problem 6. Compare the accuracy of some basic mathematical function. A good starting
point is Section 4 in “Beating Floating Point at its Own Game” [24, pp. 78] which
introduces the concept of decimal loss as a metric for accuracy.

Test SetupIn these examples, we evaluate the so called “decimal loss” introduced by evaluating a
unary function. Decimal loss as defined by Gustafson et al is a metric for comparing the
accuracy of some computed value y provided by computer arithmetic with an expected
value x [24]. Appendix D gives a more detailed refresher on the topic. In respect to the
actual tests, we will present our findings for the unary reciprocal function, viz.

f (t) =
1
t
. (6.13)

68

6.3 Decimal Loss of a Unary Function

0

0

0.05

0.1

0.15

t

D
ec

im
al

Lo
ss

(1
/t

)

posit
float

(a) Values on the horizontal sorted,
zero is at the center.

0 50 100 150 200 250

0

0.05

0.1

0.15

Accumulated Samples

D
ec

im
al

Lo
ss

(1
/t

)

posit
float

(b) Values on the horizontal sorted by
decimal loss.

Figure 6.4: Plotting decimal loss of unary function f (t) = 1/t with 8 bit types. Posits
results in red, floating point results in blue.

For each value t provided by the given float or posit data type, we compute the decimal
loss introduced when computing reciprocal y = 1/t. Standard 64 bit double arithmetic
provides reference x. While previous work is limited to only 8 bit types, we extended the
experiment to include standard 16 types as well. We find this is of particular importance
as 16 bit floats actually see real world applications [47]. Something not necessarily the
case for the more limited 8 bit types used in previous publications.

Figure 6.4 plots the result for the 8 bit types while Figure 6.5 illustrates the results when
run with 16 bit types. When values t on the horizontal are ordered by the introduced
decimal loss, we see a steeper raise for floating points than for posits. This matches
previous findings by Gustafson et al [24, p. 79]. In general, posits exhibit less decimal
loss for both 8 and 16 bit types when computing the unary reciprocal.

Erratic Loss We also plot the results sorted by value t with t = 0 at the center. Decimal loss is
clustered close to zero and infinity. Both floats and posits show a drastic peak for decimal
loss in this area. Despite this, on a whole the resulting plots are quite erratic. We can make
little assumptions about the decimal loss of the result. Designing accurate algorithms still
requires constant vigilance as decimal loss is distributed in a mostly erratic fashion. In
absolute numbers, posits do perform better. Figure 6.5c shows this especially well as it is
limited to those 10,000 values with lowest decimal loss. Decimal loss grows less quickly
with posits than it does with floats.

Summary Based on previous work by Gustafson et al, we reproduced and extended experiments
that evaluate decimal loss. While it is true that posits perform better than floats, the
bigger picture is more complicated. Both floats and posits show erratic error, meaning a
programmer using either format can make little assumptions about the level of introduced
error.

69

6 Evaluating Type III Unum Arithmetic

0

0

0.05

0.1

t

D
ec

im
al

Lo
ss

(1
/t

)

posit

(a) Values on the horizontal sorted,
zero is at the center.

0

0

0.05

0.1

t
D

ec
im

al
Lo

ss
(1
/t

)

float

(b) Values on the horizontal sorted,
zero is at the center.

0 0.5 1
·104

0

0.2

0.4

0.6

0.8

1

·10−4

Accumulated Samples

D
ec

im
al

Lo
ss

(1
/t

)

posit
float

(c) Values t on the horizontal sorted by
decimal loss. This plot only shows
the first 104 values, i.e. those values
with lowest decimal loss.

Figure 6.5: Plotting decimal loss of unary function f (t) = 1/t with 16 bit types. Posits
results in red, floating point results in blue. We see drastic peaks close to zero
and infinity.

70

6.4 Closure and Accuracy

6.4 Closure and Accuracy

We expect the standard operations +, −, · and ÷ to be closed, that is given two argu-
ments x and y of some type, the result of any binary operation x◦y should again be of the
same type. On R, this holds for most operations.

We could cheat here and argue that the result of, for example, any float division is
again a value of type float. But this is hardly productive. What we are interested in
are non-special values that allow us to continue computation. In this way, perfect closure
is achievable with neither floats nor posits as both formats contain special values such
as NaR or NaN. What we can compare is how often special values pop up as a result of
standard math operations.

6.4.1 Closure
We decided on an empiric approach where for each binary operation ◦, we evaluate

x◦ y (6.14)

with our aarith-based implementation and then plot the result. While this approach is
relatively straight-forward to implement, it is limited to small sizes. Trying out every
possible combination of arguments x and y for a 32 type would result in a plot with

232 ·232 = 264 (6.15)

pixels, an amount no memory currently available to us can store. As such we limited
ourselves to 8 and 16 bit types. Previous work published by Gustafson is limited to only
8 bit posit types [23, pp. 63].

Floating
Point
Closure

Figure 6.6 plots closure for 8 and 16 bit floats. (1) Red pixels indicate that a given result
is NaN, (2) blue pixels indicate either positive or negative infinity and (3) green pixels
represent standard values in R. For the higher resolution 16 bit type, special values are
generally less pronounced. But no matter the resolution, a good portion of all available
bit patterns is spent on special values. Unum literature would perhaps call these cases
“wasted” [23, p. 44].

Posit
Closure

The equivalent posit plots in Figure 6.7 give a different picture. Almost all pixels are
green, we only get a slight red border in the very few cases where the result of a given
binary operation is NaR. This is the case only when any of the operands themselves
are NaR or when division by zero is attempted. Plots for the 8 and 16 bit types look
exactly the same. No matter the size, the behavior is identical. We might count this as a
plus for the posit format. No matter the parameters, behavior is identical as far as closure
is concerned.

Just from looking the these two sets of plots, we might get the idea that posits are closed
in more cases and as such are a better format. Of course this is an oversimplification.
What is actually happening is that posits cannot alert users of values too big or small to
represent. While posits indicate failure with∞, posits can do no such thing.

71

6 Evaluating Type III Unum Arithmetic

(a) x+ y, 8 bits (b) x− y, 8 bits (c) x · y, 8 bits (d) x÷ y, 8 bits

(e) x+ y, 16 bits (f) x− y, 16 bits (g) x · y, 16 bits (h) x÷ y, 16 bits

Figure 6.6: Closure of binary operations x ◦ y where x and y are standard floating point
types. Green values represent a normal result, red indicates NaN and blue
infinity.

(a) p+q, 8 bits (b) p−q, 8 bits (c) p ·q, 8 bits (d) p÷q, 8 bits

(e) p+q, 16 bits (f) p−q, 16 bits (g) p ·q, 16 bits (h) p÷q, 16 bits

Figure 6.7: Closure of binary operations p ◦ q where p and q are standard posit types.
Green values represent a normal result, red indicates NaR.

72

6.4 Closure and Accuracy

(a) x+ y, 8 bits (b) x− y, 8 bits (c) x · y, 8 bits (d) x÷ y, 8 bits

(e) x+ y, 16 bits (f) x− y, 16 bits (g) x · y, 16 bits (h) x÷ y, 16 bits

Figure 6.8: Accuracy of binary operations x◦ y where x and y are standard floating point
types. Shades of green represent relatively accurate results, shades of red
are less accurate. Values in black are either NaN or infinity; in these cases
computing decimal loss will not yield useful results.

6.4.2 Accuracy
Even perfect closure is not particularly useful should the computed result be wrong. For
this reason, we reproduced and improved upon previous work [23, pp. 63] which plots the
decimal loss of all four arithmetic operations. Unlike previous work, we plot the results
not just for 8 but also for 16 bit types. The resulting plots are pretty, but drawing definite
conclusions from them is anything but easy.

Float
Accuracy

Figure 6.8 plots the decimal loss of all four arithmetic operations for both 8 and 16 bit
floating point types. As computing decimal loss for special values NaN or infinity does
not exactly tell us much, the respective pixels were left black. If we look at just the
non-special values shaded on a spectrum between green (relatively accurate) and red
(relatively high error), we see that (1) the higher resolution types are more accurate and
(2) while there are some patterns, distribution of decimal loss is mostly erratic.

Posit
Accuracy

Moving to posit arithmetic in Figure 6.9, we can make similar observations. Most
notably, the 16 bit type is more accurate than the low resolution 8 bit type. So much more
accurate in fact that the plot is almost entirely green. All plots for floats and posits of
either 8 or 16 bits in size share the same scaling. As the 16 bit posit plots are mostly
green, we know that they show the least amount of decimal loss.

Summary While the resulting accuracy plots are no doubt pretty, it is difficult to draw real world
conclusions from them. The first impression must be that both floats and posits show
erratic behavior. A second observation is that posits do have cases where they are deeper
in the read than floats. As posits do not return infinity for a finite result, but this comes at
the cost of great inaccuracies.

73

6 Evaluating Type III Unum Arithmetic

(a) p+q, 8 bits (b) p−q, 8 bits (c) p ·q, 8 bits (d) p÷q, 8 bits

(e) p+q, 16 bits (f) p−q, 16 bits (g) p ·q, 16 bits (h) p÷q, 16 bits

Figure 6.9: Accuracy of binary operations p ◦ q where p and q are standard posit types.
Shades of green represent relatively accurate results, shades of red are less
accurate. Values in black are NaR; in these cases computing decimal loss will
not yield useful results.

6.5 Commutativity, Associativity and Distributivity

We have certain expectations about the standard arithmetic operators +, −, · and ÷
known from N or R. In particular, we may expect associative, commutative and dis-
tributive properties. With computer arithmetic, many of these properties do not hold.
The question for our evaluation has to be whether Type III arithmetic is any better than
traditional floating points.

Properties
On R

Most readers will be familiar with the properties mentioned above; nevertheless Ap-
pendix E provides a quick review of their definitions. On R, addition a+b is commuta-
tive and associative just as multiplication a ·b is commutative and associative. Combining
both operations, multiplication distributes over addition in the sense that

a · (b+ c) = ab+ac (6.16)

and so on. In the interest of time, our discussion omits subtraction and division.

6.5.1 Properties of Floating Point and Posit Arithmetic
As both IEEE floating point numbers as well as posits represent values in R, one would
expect their operators to obey the same laws as in R. But there is no free lunch. While
commutativity holds, associativity and distributivity does not.

74

6.5 Commutativity, Associativity and Distributivity

Commutative Property.

Both floats and posits offer addition and multiplication operations that are commutative.
In either case, to compute the sum or product of operands a and b, we first split a and b
into scale k and fraction m, that is

a = ma ·2ka and b = mb ·2kb , (6.17)

do the math with those parameterized forms,

a+b = ma ·2ka +mb ·2kb (6.18)

and then convert back to floating point or posit representation. Because all parameterized
operations are integer operations and integers addition and multiplication is commuta-
tive [48], so is floating point and posit addition and multiplication. Note that this only
shows commutativity. It does not mean that the results will be correct or particularly ac-
curate. Commutativity only implies that no matter the order of operations, the result will
be identical.

Associative Property

The story is a different one when it comes to associativity. Neither floating point nor posit
arithmetic can ensure this property [49, p. 30]. Consider the case of

(x+ y)+ z (6.19)

where x, y and z are floats or posits. Above sum is not guaranteed to be identical to

x+(y+ z) (6.20)

because in either case the sum inside the parenthesis are evaluated first. Rounding takes
place at different steps and as such the results are not guaranteed to be the same. Neither
floats nor posits ensure the associative property for addition or multiplication.

Distributive Property

Addition and multiplication on floats or posits are not distributive either. [50, pp. 6].
Splitting up some term

a · (b+ c) = ab+ac (6.21)

means that instead of evaluating b+c first, products ab and ac are evaluated and rounded
first. The result cannot be guaranteed to be identical.

Neither floats nor posits maintain the associative and distributive properties of addition
or multiplication. Programmers will always have to keep these constraints in mind when
implementing numeric algorithms based on floating point or posit arithmetic. In this

75

6 Evaluating Type III Unum Arithmetic

regard, posits are no better than floats.

6.5.2 Properties of Valid Arithmetic
While posits are no better than floating points, what about the new valid format? As
a supposedly mathematically rigorous system, can valids do any better than traditional
floating point arithmetic? Unfortunately, we find that just like floats and posits, valids do
not maintain associativity and distributivity for addition and multiplication.

Commutative Property.

Valid addition and multiplication is commutative because the underlying posit addition
and multiplication is as well. Valid addition amounts to evaluating interval arithmetic
rule

v+w = (a,b)+(c,d) = (a+ c,b+d) (6.22)

which is the same as

w+ v = (c,d)+(a,b) = (c+a,d +b) (6.23)

and as such valid addition is commutative. The same applies for multiplication. In valid
multiplication, we have to compute four candidates

v ·w = (a,b) · (c,d)→{ac,ad,bc,bd} (6.24)

which are the same four candidates even if we flip v and w around, viz.

w · v = (c,d) · (a,b)→{ca,cb,da,db}. (6.25)

We see that valid multiplication is commutative.

Associative Property

Valid addition and multiplication are not associative. One can find many examples for
why this is the case. Here we present two simple examples in a V4,1 environment (Ap-
pendix B). We begin with addition. If associativity were to hold, we would get

a+(b+ c) = (a+b)+ c. (6.26)

However, if we pick

a = 4, b = 1, c = 1 (6.27)

76

6.5 Commutativity, Associativity and Distributivity

we see that the results differ as

a+(b+ c) = 4+(1+1) = 4+2 = (4,16) (6.28)
(a+b)+ c = (4+1)+1 = (4,16)+1 = (4,∞). (6.29)

The order of evaluation changes the result. Of course in either case the perfectly accurate
result 4+1+1 = 6 is contained in the returned interval. But the returned intervals are not
identical and as such valid addition is not associative. In a similar fashion, if associativity
were to hold for valid multiplication, we would get

a · (b · c) = (a ·b) · c (6.30)

but again this is not the case. Picking

a = 0.25, b =−2, c = (2,16) (6.31)

results in different outcomes depending on the order of evaluation. We get

a · (b · c) = 0.25 · (−2 · (2,16)) = 0.25 · (−∞,−4) = (−∞,1) (6.32)
(a ·b) · c = (0.25 · (−2)) · (2,16) =−0.5 · (2,16) = (−16,−1). (6.33)

Note that in either example, one result contains infinity while the other does not. De-
pending on the order of evaluation, we may get small bounds (Equations 6.28, 6.33) or
huge bounds that contain infinity (Equations 6.29, 6.32).

Distributive Property

On R, we can distribute multiplication over addition, that is

a · (b+ c) = ab+ac. (6.34)

However for valids, if we pick

a = 0.25, b =−2, c = 16 (6.35)

in an V4,1 environment, we get different result for the left and right terms, viz.

a · (b+ c) = 0.25 · (−2+16) = 0.25 · (4,16) = (1,4) (6.36)
a ·b+a · c = 0.25 · (−2)+0.25 ·16 =−0.5+4 = (2,4). (6.37)

Just like with associativity, distributivity does not hold on valids.
While valids do not perform worse than traditional floating point arithmetic, they

hardly are more rigorous as far as associativity and distributivity is concerned. Perhaps
worse, the size of returned intervals can vary greatly depending on the concrete order of
evaluation.

77

6 Evaluating Type III Unum Arithmetic

float8 float16 float23 posit8 posit16posit32
0

20

40

60

80

100

Arithmetic Type

D
ist

rib
ut

io
n

of
Va

lu
es

[%
]

special values
values outside the unit
values on the unit

Figure 6.10: Distribution of values on the unit [−1,1], outside the unit or special (i.e.
NaR, NaN or infinity). For higher resolutions, floating points and posits are
distributed in about the same way.

6.6 Exploiting the Unit Interval?

Posits should be especially accurate on the unit interval [−1,1]. When applications do
lots of computations close to zero, posits should perform well. If on the other hand we
do math with huge unscaled numbers, perhaps floating points can be a better choice. We
want to investigate this hypothesis with a real world experiment.

Problem 7. Decision Tree Learning is a simple but effective way of machine learning [51,
pp. 697]. As all involved math is run on probabilities p ∈ [0,1], we expect posits to be a
natural fit. Implement decision tree learning and compare the performance of floats with
that of posits.

To experiment with decision tree learning, we ported an existing open source imple-
mentation, bowbowbow/DecisionTree [52], to support arbitrary aarith types. Unfor-
tunately, the results acquired from our experiments are not very decisive. Even 8 bit
posit and floating point types provide the same exact result as 64 bit types in all standard
benchmarks and examples. For what it is worth, it is interesting to see that low resolution
types perform so well in this task. But we are interested in comparing floats with posits.
Both floats and posits perform the same, neither format is really superior in this case.

Equal Dis-
tributions

Reality strikes once we analyze the distribution of values for both floating points and
posits. Figure 6.10 shows the share of (1) real values on the unit, (2) real values outside
the unit and (3) special values, that is NaR, NaN and infinity. It is true that posits spend
about half of all available values on the unit. But for floats the story is pretty much the
same. For both the 16 and 32 bit floating point types used in real world systems, about

78

6.7 Some Experiments on Valids

0 5 10 15 20 25 30
0

50

100

150

200

Iteration Step i

Va
lu

e
x i

V8,2 low bound
V8,2 high bound
P8,2 posit

(a) Iteration using the V8,2 valid type results
in a huge bound.

0 5 10 15 20 25 30
0

10

20

30

Iteration Step i

Va
lu

e
x i

V16,2 low bound
V16,2 high bound
P16,2 posit

(b) Iteration using the V16,2 valid type be-
haves well in the first 30 steps.

Figure 6.11: Starting at x0 = 0, we iterate by repeatedly adding 1 to xi. Even this simple
example causes problems as posit arithmetic eventually gets stuck.

half of all available values end up on the unit. This feature of posits really is not unique
to the format. Tried and tested floating points are distributed in about the same way,
especially when it comes to the higher resolution types actually in use today.

6.7 Some Experiments on Valids

Our evaluation so far was focused on posit arithmetic. While be believe posits to be
the center piece of Type III arithmetic, what about the novel valids? As our port of the
aarith library contains rudimentary support for the format, we at the very least want to
preset the following three examples dedicated to valid arithmetic.

Problem 8. Continuously increment a counter by one. Even this simple example can
cause problems in float or posit arithmetic. Check whether valids are any better.

Starting at x0 = 0 and repeatedly incrementing xi+1 = xi + 1 can cause serious error
when xi is a floating point or posit type. Remember that either format rounds results to
the nearest representable point on the number line. At some point, both floats and posits
eventually get stuck. This happens when incrementing xi +1 is rounded down to just xi,
that is when

xi +1 = xi. (6.38)

In this experiment, we continuously incremented both 8 and 16 bit valids by one, the
results are plotted in Figure 6.11. The 8 bit valid diverges to a huge interval starting
right after i = 16. Meanwhile the 16 bit valid returns accurate results in the first 30 steps
plotted in Figure 6.11. The reason for this curious behavior is that incrementing 8 bit

79

6 Evaluating Type III Unum Arithmetic

0 10 20 30 40 50

−2

0

2

4

6

8

Iteration Step i

Su
m

V8,2 low bound
V8,2 high bound
P8,2 posit
target π/4

(a) Iteration in a low resolution 8 bit posit
environment.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration Step i

Su
m

V16,2 low bound
V16,2 high bound
P16,2 posit
target π/4

(b) Iteration in a higher resolution 16 bit
posit environment.

Figure 6.12: Computing a series that should approach π/4. While 16 bit valids return a
good bound on the expected result, the low resolution 8 bit valid diverges.

posits gets stuck at value 16. In P8,2 arithmetic, we get

16+1 = 16 (6.39)

as the next discrete step on the number circle after 16 is 20. For the higher resolution
16 bit type, this happens much later at 1024. While not pictured in our figures, the
respective 16 bit valid type also starts diverging right after i = 1024, exactly when the
associated posit type gets stuck itself.

This is a big win for valids. Valids as a mathematical rigorous debugging environment
warn the user that the result of the requested operation does not fit in the underlying posit
type. While valids do not automatically provide an accurate solution, they do not hide
rounding error either.

Problem 9. Evaluate an infinite sum with both posits and valids. See how the result
compares. Perhaps valids can be used to determine when iteration may halt.

In this example, we look at how valids perform when summing up infinite series. One
question in particular we are interested in whether valids can help us in finding the right
number of summands to evaluate before halting computation. In concrete terms, we used
series

∞

∑
k=0

(−1)k 1
2k+1

= 1− 1
3
+

1
5
− 1

7
±·· ·= π

4
[42, p. 77] (6.40)

to approximate π/4. The results for both 8 and 16 bit types are plotted in Figure 6.12.
In the low resolution 8 bit environment, posits very quickly reach the correct solution,

jumping between a value just above and one just below the expected result pi/44. Unfortu-
nately this is not mirrored by the respective valid type. While posits quickly arrive at the

80

6.7 Some Experiments on Valids

5 10 15 20
0

5

10

15

20

Iteration Step i

Va
lu

e
x i

V8,2 low bound
V8,2 high bound
P8,2 posit
target

√
2

(a) Iteration using the V8,2 valid type

0 5 10 15 20 25 30
1.3

1.4

1.5

1.6

Iteration Step i

Va
lu

e
x i

V16,2 low bound
V16,2 high bound
P16,2 posit
target

√
2

(b) Iteration using the V16,2 valid type.

Figure 6.13: Computing
√

2 using the Newton-Raphson method [40]. While the returned
posit results are good, 8 and 16 bit valids actually result in unacceptably big
bounds.

right results, the valid bound only grows with each step. We could interpret this as cause
for alarm when in fact the computation was successful. In the 16 bit environment, posits
also quickly converge at a correct result. But unlike before, valids follow suit, closely
capturing the result as part of their bound.

As far as Problem 9 is concerned, valids return mixed signals. While in the low resolu-
tion 8 bit environment valids raise alarm, they happily converge in the higher resolution
16 bit environment. Judging from this limited experiment, valids cannot serve as a guide
for when to halt summation.

Problem 10. Compute the square root of two using the Newton-Raphson Method. See
how valids react when the result starts being correct.

This is similar to Problem 9, but instead of evaluating a series we run an iterative
algorithm. In particular, the Newton-Raphson method computes the square root of x by
iterating

xi+1 =
1
2

xi + x
2

(6.41)

starting at x0 = 2 [40]. We actually use this algorithm in our implementation of sqrt and
as previous examples show that it serves us well (Section 5.2).

Figure 6.13 plots our results. As we are computing
√

2≈ 1.414213 and start at x0 = 2,
posits very quickly arrive at a result that is quite good. This is true even for the low
resolution 8 bit environment. Unfortunately, in this case valids quickly diverge in both
8 and 16 bit environments. Again users are alerted of potential problems when in fact
posits arrived at a perfectly useful result.

Summary It is hard to draw definite conclusion from these three examples. While Problem 8 is
promising, valids fail to provide good answers for Problems 9 and 10. Certainly we did

81

6 Evaluating Type III Unum Arithmetic

learn that naively adapting standard algorithms as in use with floats or posits will not
necessarily yield productive result when run with valids. Admittedly we ran way less
valid examples than we would have liked. It is up to future research to figure out how
valids react in different applications.

6.8 Full Applications

Posits are meant to be drop replacements for floating points, but posit arithmetic certainly
is not a perfect one-to-one match. While floats differentiate between∞, −∞ and NaN,
posits only have NaR as a special value. In addition, posits never round reals to NaR or
zero, rather they round to maxpos or minpos instead. To gather some related hands-on
experience, it makes sense to port real-world applications to use posits instead of floats.

6.8.1 Porting a Raytracer
Problem 11. Port the nsilvestri/cpp-raytracer [53] project to use posits instead
of floats. While there are many ray tracers out there, this one in particular is delightfully
short.

cpp-raytracer is a rudimentary implementation of ray tracing [54, pp. 1-31] writ-
ten in C++, clocking in at about 11,000 lines of code [53]. All arithmetic is done with
the standard double floating point type on the CPU. We ported cpp-raytracer to use
arbitrary floating point and posit types provided by our version of the aarith library.

Two Step
Porting

Directly porting even a small project such as cpp-raytracer to posits can be difficult
as it involves many small changes. If even one change is incorrect, the entire result
might turn out wrong. This certainly was the case for us; a simple find and replace of
all occurrences of the float type with a respective posit type yielded nothing but a black
screen. What proved less error prone was to first port the project to use aarith floating
point types. Comparing different outputs at different steps allowed us to find careless
copy-paste errors. Once the port to aarith floating points was complete, switching to
aarith::posit was trivial.

Easy PortWe find that that this particular implementation of ray tracing does not take advantage
of special values such as NaN or infinity. As such, once porting to the posit type was
complete, our implementation just worked, returning matching results to the naked eye.

16 Bit Posit
Equal To
32 Bit Float

With our port complete and functional, it was naturally tempting to try out types of dif-
ferent resolution and evaluate how they compare in this particular use-case. Figure 6.14
presents the output for different types. When we have at least 32 bits of precision, both
standard floats and posits perform just fine. The original version of the project uses dou-
ble for everything, but in our experiments float proved sufficient to produce satisfactory
results. Curious things start happening once we scale down to only 16 bits of precision.
While the standard 16 bit posit type performs well aside from slight aliasing, 16 bit floats
fail to provide a proper result.

16 Bit
Storage

82

6.8 Full Applications

(a) Standard fp16 type. (b) Standard float type. (c) Standard double type.

(d) 8 bit aarith posit. (e) 16 bit aarith posit. (f) 32 bit aarith posit.

(g) 8 bit aarith float. (h) 16 bit aarith float. (i) 32 bit aarith float.

Figure 6.14: Running our port of cpp-raytracer with different floating point and posit
types.

(a) Standard fp16 type. (b) 16 bit aarith posit.

Figure 6.15: Running our port of cpp-raytracer with 16 bit types. Using 16 bit types
introduces aliasing not present in higher resolutions.

83

6 Evaluating Type III Unum Arithmetic

1 float max_of(vector<float> &elements)

2 {

3 float maxval = -INFINITY;

4

5 for (float elem : elements)

6 {

7 if (elem > maxval)

8 {

9 maxval = elem;

10 }

11 }

12

13 return maxval;

14 }

Listing 2: Computing the maximum value of a vector of floating point values. Function
max of uses the special INFINITY value not available in posit arithmetic.

For comparison, we also ran cpp-raytracer with the fp16 data type which repre-
sents an IEEE half precision float, available on 64 bit ARM platforms [55]. Rendering
the scene with this fp16 type results in a mostly satisfactory result, exhibiting similar
aliasing as when run with 16 bit posits. Figure 6.15 shows a close-up of the aliasing in-
troduced by the respective 16 bit types. Why the difference between fp16 and aarith

floating point types? While ARM platforms and compilers do support 16 bit IEEE float-
ing points, the 16 bit format is used only for storage. When arithmetic is done on fp16

values, they are first converted to a standard 32 bit float. Arithmetic is done in the
higher resolution, the result converted back to fp16 [55]. This allows for compact
storage while arithmetic is still reasonably accurate.

SummaryIn summary, porting cpp-raytracer to use posits was easy, especially as we were
able to first port the project to use aarith floats in an intermediate step. In this particular
case, posits are a genuine drop-in replacement for floating point arithmetic. Additional
experiments with the fp16 type showed that using low resolution types for storage and
high resolution types for arithmetic can yield very productive results, a topic worth further
investigation for both floats and posits.

6.8.2 Porting a Genetic Algorithms Library
Problem 12. Arash-codedev/openGA [56] provides configurable implementations of
genetic algorithms. It might be interesting to port it to use posits instead of floating
points.

openGA is a framework that can be used to solve optimization problems with genetic
algorithms written in C++ [56]. In its original version, all computations use the standard
double type. For our experiments, we ported the project to support aarith floating point
and posit types as well. Our experiments show that both types perform about the same,

84

6.8 Full Applications

Type Generations Cost Type Generations Cost

float64 28.6 2.9 posit64 29.3 3.1
float32 29.1 2.9 posit32 29.4 2.9
float16 140.1 2.5 float16 25.8 1.3 (wrong!)

Table 6.4: Running the so-1 example from the Arash-codev/openGA package with var-
ious aarith data types. Each experiment was run a total of 1,000 times, values
listed in this table are averages. Less is better.

though at low resolutions, floats take longer while posits return incorrect results.
Difficult
Port

While our port of cpp-raytracer did not require sophisticated modifications, this
was not the case with openGA as the project uses floating point value∞ in its logic. In
particular, code in the vain of Listing 2 had to be modified. As the code base of this
particular project comprises of less than 4,000 lines, it was not particularly difficult to
find all relevant cases and replace them with appropriate workarounds. In bigger projects
however, we are looking at a more delicate task. Calling posit arithmetic a drop-in re-
placement is problematic because porting applications that use floats to posit arithmetic
can introduce tricky bugs.

Generations Genetic algorithms often work in generations. In each generation, randomly chosen
genotypes are combined in a way that hopefully improves the overall result [57]. openGA
contains various examples, including example so-1 which runs a single objective opti-
mization problem until the result is reasonably optimized. Naturally it is desirable for
this to occur as quickly as possible, that is we want a good result in a small number of
generations.

Deceiving
Results

With our port in place, we compared the performance of floating point and posit types
when running the so-1 example, Table 6.4 lists our results. Standard 32 and 64 bit types
perform about the same, arriving at a reasonable result in about the same number of
steps. When we reduce the bit width to 16, things get interesting. Standard half precision
floating point requires way more generations, but eventually arrives at a valid result. The
16 bit posit type on the other hand is problematic because the results are deceiving. On
first glance, posit16 requires the least number of steps while returning the best result.
The problem is that result are inaccurate. The resulting genotypes, if computed with
higher resolution, result in a cost much higher than when computed with posit16.

Summary Porting openGA to use our version of the aarith library yields two interesting con-
clusions. First of all, posits really cannot be called a true drop-in-replacement for floats.
Posits have no way of representing infinity and as such any logic that relies on it will
require extra tweaking. We worry that porting big projects could be quite the endeavor.
Second, we saw that in this particular application, floats and posits yet again perform
about equally well. The one exception are are the low resolution 16 bit types where
floats are slow and posits are wrong, meaning neither type is particularly advantageous
compared to the higher resolution alternatives.

85

6 Evaluating Type III Unum Arithmetic

6.8.3 Porting a Neural Network Application
Problem 13. Rekpet/TypeCNN “is a convolutional neural network library that provides
reasonable amount of functionality and reasonable speed on CPU” [58]. As all arith-
metic is done on the CPU, it can be adapated to support different arithmetic types.

Easy PortPrevious work on the aarith library already added support for aarith floating types
to the TypeCNN project [31]. It comes natural to extend the existing fork with support for
posit arithmetic. As TypeCNNN does not use any float-specific logic like we encountered
in the openGA project, porting TypeCNN to posits was as simple as replacing the respective
type alias with an aarith::posit type.

Posits
Outperform
Floats

To compare the accuracy of different floating point and posit types in this application,
we ran a benchmark that trains a neural network to recognize handwritten letters [59].
Previous work limited to floating points shows that low resolution floating point types
just 10 bits in length perform well in this particular test [31]. However our tests show
that posits are even better, the results are plotted in Figure 6.16. With posit arithmetic, we
start to see reasonable results for sizes as small as 6 bits where floats need at least 8 bits to
come close to an acceptable detection rate. Here we have an example were indeed posits
beat floating point at their own game.

6.9 Summary

This concludes our evaluation of Type III unum arithmetic. In our first set of experiments,
we saw that posits are more like floats than they are like the original unums. Though at
the very least, valids can warn developers of something being amiss. As far as posit ex-
periments and benchmarks are concerned, we generally were able to reproduce previous
results. Where possible we extended previous tests to include more realistic parameters
for the given unum types. Disappointingly, we also saw that posits and valids do not pro-
vide associativity and distributivity. Similarly, experiments with valids proved indecisive,
returning mixed signals depending on resolution and application. In our final set of ex-
periments we ported three real world applications to use Type III arithmetic. In general,
porting was easy, though we remain worried about float-specific code that might turn out
to be hard to track down and fix.

86

6.9 Summary

(a) N = 5. (b) N = 6.

(c) N = 7. (d) N = 8.

(e) N = 9. (f) N = 10.

Figure 6.16: Detection rates when using a neural network to recognize handwritten let-
ters. While posits perform well with as little as N = 6 bits, floats require at
least N = 8 bits in size to achieve good detection rates.

87

7 Conclusion

Are posits and valids a replacement for IEEE 754 floating point arithmetic? We started
this thesis with a grim look at problems introduced by computer arithmetic. Computer
arithmetic is limited by a fixed number of bits and contains confusion duplicate patterns.
Jagged accuracy results in curious results, even repeatedly incrementing a number does
not necessary behave as expected. All of which are problems we have learned to live
with, so perhaps it is true that floating points are in dire need of replacement?

Unum arithmetic promises to be an alternative to floating points that does not suffer
from any of such problems. In particular, it wants to provide an automated solution to
complicated numerical analysis. Type I and Type II unum arithmetic boast novel ideas
like the u-bit but ultimately proved unreasonably hard to implement. Type III arithmetic
is meant to solve these problems as it takes real hardware into account.

Type III arithmetic, split into posits, quires and valids can provide the programmer
with the right tool for the right job. Posits are meant for quick and efficient computations
while valids are more of a debugging tool used during development. Our evaluation of
the posit format certainly showed that posit arithmetic can hold its water compared to
traditional floating points. But in our experiments, posits never really were notably better
than floating points. Posits usually are just as good as floats.

As for valids, we are not yet ready for a definite conclusion. While occasionally useful
to indicate the presence of error, as a whole it appears that valids suffer from similar
problems as traditional interval arithmetic. This should not be surprising as our definition
of valids is based on the rules of traditional interval arithmetic. In particular, we showed
that valids do not maintain associativity and distributivity on addition and multiplication.
With this in mind, we really cannot call valids mathematically rigorous.

Future
Work

Perhaps any good thesis asks more questions than it answers. Certainly there is lots of
potential for future work that can build on our contributions. First of all, our definition of
valids is of need of improvement. In particular, irregular valids are a topic that escaped
us. Valids themselves also require more experimentation as we only presented some first
steps. We believe that our aarith-based implementation can be a good breeding ground
for developments in this direction. Aside from these big points, we also see smaller topics
of interests. As we showed, finding accurate mathematical algorithms for functions such
as sqrt, log and sin is a topic of its own.

Numeric
Diversity

Surely the calls for the death of floating points are greatly exaggerated. Nevertheless,
we found cases were indeed posits perform better. Maybe the future is one of numeric
diversity. Why restrict ourselves to just one numeric formats when we can have multiple
ones, tuned for different applications.

89

A Value of Floating Point

This example illustrates how to compute the value of some IEEE 754 floating point value
as defined in Section 1.5

Here we will use the binary16 type as defined by IEEE 754. It represents a F5,10 float
with bias B = 15 [12, p. 13]. For our example, now consider floating point

x = 0 10000 1001001000 (A.1)

already written in a way that separates sign bit, exponent and mantissa fields. Bit string x
does not represent a special value, so Equation 1.31 gives us

x = (−1)0 ·1.1001001000 ·2B−100000. (A.2)

This also explains the notation 1.m which asks us to interpret bit string m as the fractional
part of an unsigned fixed point number with a single 1 at the front. All we have to do now
is to plug in the numbers. Because sign bit s is zero, the sign is

(−1)0 = 1, (A.3)

that is value x is non-negative. The fractional part of floating point x is a fixed point
number, its value is

1.1001001000= 1+
1
2
+

1
16

+
1

128
= 1.5703125. (A.4)

Finally, we have to determine the scale factor which is based on exponent

e = 10000= 16. (A.5)

Pulling it all together, we get

x = (−1)0 ·1.5703125 ·216−15 = 3.140625 (A.6)

which is an, admittedly rough, approximation of π .

91

B Posits Visualized

Throughout this thesis, we reference posit types PN,ES. It can be hard to understand
certain examples without the specific type in mind. Here we include the number circles
for some small resolution types available for review when necessary.

1

2

1
2

0

−
1

2

−1

−2

N
aR

010

01
1

001

00
0

11
1

110

101

100

(a) P3,0 posit.

1

4

1
4

0

−
1

4

−1

−4

N
aR

010

01
1

001

00
0

11
1

110

101

100

(b) P3,1 posit.

1

1
16

116

0

−
1

16

−1

−
116

N
aR

010

01
1

001

00
0

11
1

110

101

100

(c) P3,2 posit.

Figure B.1: Posits with N = 3 bits.

1

3
2

2

4

3
4

1
2

14

0−
1 4

−
1

2

−3
4

−1

− 3
2

−2

−
4

N
aR

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010
1001

1000

(a) P4,0 posit.

1

2

4

16

1
2

1
4

1160−
1

16

−
1

4

−1
2

−1

−2

−4

−
16

N
aR

0100

0101

01
10

01
11

0011

0010

0001
00

0011
11

11
10

1101

1100

1011

1010

1001

1000

(b) P4,1 posit.

1

4

16

25
6

1
4

116

12560−
1

25
6−

1
16

−1
4

−1

−4

−16

−
256

N
aR

0100

0101

01
10

01
11

0011

0010

0001

00
0011

11

11
10

1101

1100

1011

1010

1001

1000

(c) P4,2 posit.

Figure B.2: Posits with N = 4 bits.

VN,ES valids use PN,ES posit tiles as endpoints. As such the number circle for type PN,ES
can also be used to illustrate valid type VN,ES. Difference being that the respective valid
type can also address the ranges between individual posit points on the circle.

92

C Standard Floating Point and
Posit Types

Floating point and posit types can be configured with various parameters. In practice,
only a small subset of parameters is actually in use. Here we list the standard types used
throughout this thesis.

Name IEEE 754 C Type Size N Exponent E Mantissa M

float8, quarter precision N/A N/A 8 4 3
float16, half precision N/A N/A 16 5 10
float32, single precision binary32 float 32 8 23
float64, double precision binary64 double 64 11 52
float128, quad precision binary128 N/A 128 15 112

Table C.1: Standard floating point types FE,M, including standard types as defined by
IEEE 754 [12, p. 8] and the C programming language [60, p. 36].

Name Size N Exponent Size ES

posit8 8 2
posit16 16 2
posit32 32 2
posit64 64 2
posit128 128 2

Table C.2: Standard posit types PN,ES. Based on the latest draft of the posit standard [25,
p. 6]. VN,ES valids use PN,ES posits as endpoints.

93

D Decimal Loss

Decimal loss is a metric for rating the accuracy of computer arithmetic systems intro-
duced by Gustafson. This section gives a quick review of its definition.

Defintion 22. Given some expected result x and an actual result y by some concrete
implementation, then ∣∣∣ log10

x
y

∣∣∣ (D.1)

is called the “order-of-magnitude distance” or “decimal loss” of expected value x com-
pared to actually returned value y [24, p. 78].

ExampleDecimal loss is a tool for comparing the accuracy of computed values y to perfect
mathematical solutions x. It provides us with a metric that correlates with the number of
decimal digits that are incorrect or lost. For example, say that x = 1 is the expected accu-
rate result. If for some reason our computer arithmetic system returns actual value y= 10,
the decimal loss is ∣∣∣ log10

1
10

∣∣∣= 1, (D.2)

indicating that one decimal digit is incorrect or rather that we lost one digit of accuracy. In
practice the differences between perfect solution x and computer arithmetic answer y will
be more minute. Nevertheless, decimal loss can be a useful tool for evaluating accuracy,
in particular because it is easy to automatically evaluate for many values.

94

E Properties of Binary Relations

Here we quickly review three properties of binary relations.

Defintion 23. For some binary relation ◦, commutativity [61] means that arguments a
and b can be switched without changing the result, that is

a◦b = b◦a. (E.1)

Defintion 24. For some binary relation ◦, associativity [62] effectively means that paren-
theses can be added or omitted without changing the result, that is

(a◦b)◦ c = a◦ (b◦d). (E.2)

Defintion 25. Looking at binary relations ◦ and ?, distributivity [63] means that ? can
be distributed over ◦ such that

a? (b◦ c) = (a?b)◦ (a? c) and (b◦ c)?a = (b?a)◦ (c?a). (E.3)

95

Bibliography

[1] Jennifer S Light. “When computers were women”. In: Technology and culture 40.3
(1999), pp. 455–483.

[2] Donald E Knuth. The Art of Computer Programming 2: Seminumerical Algo-
rithms. Addison-Wesley Longman, 1998.

[3] Ronald T Kneusel. Numbers and Computers. 2nd ed. Springer, 2017.

[4] stdint.h - integer types. The Open Group Base Specifications Issue 7, 2018 edi-
tion. 2018. URL: https://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/stdint.h.html (visited on 2021-04-20).

[5] Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile. Arm
Limited or its affiliates. 2020. URL: https://developer.arm.com/documentation/
ddi0487/fc/ (visited on 2021-06-09).

[6] Paul Zimmermann. “Comparison of three public-domain multiprecision libraries:
BigNum, Gmp and Pari”. In: Paul. Zimmermann@ inria. fr (1998).

[7] Will Dietz et al. “Understanding integer overflow in C/C++”. In: ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 25.1 (2015), pp. 1–29.

[8] Cong Wang et al. “Go-Sanitizer: Bug-Oriented Assertion Generation for Golang”.
In: 2019 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW). IEEE. 2019, pp. 36–41.

[9] Christopher Inacio and Denise Ombres. “The DSP decision: Fixed point or float-
ing?” In: IEEE Spectrum 33.9 (1996), pp. 72–74.

[10] Meet the Constants. National Institute of Standards and Technology. 2019-12-19.
URL: https://www.nist.gov/si-redefinition/meet-constants (visited
on 2021-04-06).

[11] William Kahan. “IEEE standard 754 for binary floating-point arithmetic”. In: Lec-
ture Notes on the Status of IEEE 754.94720-1776 (1996).

[12] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008).
DOI: 10.1109/IEEESTD.2008.4610935.

[13] John L Gustafson. The End of Error: Unum Computing. CRC Press, 2015.

[14] Laurens van Dam. Enabling high performance posit arithmetic applications using
hardware acceleration. TU Delft Electrical Engineering, Mathematics and Com-
puter Science, 2018.

97

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html
https://developer.arm.com/documentation/ddi0487/fc/
https://developer.arm.com/documentation/ddi0487/fc/
https://www.nist.gov/si-redefinition/meet-constants
https://doi.org/10.1109/IEEESTD.2008.4610935

Bibliography

[15] William Kahan. “A critique of John L. Gustafson’s The End of Error–Unum com-
putation and his radical approach to computation with real numbers”. In: 23rd
IEEE Symposium on Computer Arithmetic. 2016.

[16] William Kahan. Commentary on “THE END of ERROR” - Unum Computing.
2016. URL: https://people.eecs.berkeley.edu/~wkahan/EndErErs.pdf
(visited on 2021-04-28).

[17] Robert H Dargel, Frank R Loscalzo, and Thomas H Witt. “Automatic error bounds
on real zeros of rational functions”. In: Communications of the ACM 9.11 (1966),
pp. 806–809.

[18] “IEEE Standard for Interval Arithmetic”. In: IEEE Std 1788-2015 (2015), pp. 1–
97. DOI: 10.1109/IEEESTD.2015.7140721.

[19] Eldon R Hansen. “A generalized interval arithmetic”. In: International Symposium
on Interval Mathematics. Springer. 1975, pp. 7–18.

[20] John L Gustafson. “A radical approach to computation with real numbers”. In:
Supercomputing frontiers and innovations 3.2 (2016), pp. 38–53. DOI: 10.14529/
jsfi160203.

[21] David W. Cantrell. ”Projectively Extended Real Numbers.” From MathWorld–A
Wolfram Web Resource, created by Eric W. Weisstein. URL: https://mathworld.
wolfram.com/ProjectivelyExtendedRealNumbers.html (visited on 2021-
02-05).

[22] Walter Tichy. “Unums 2.0: An interview with john l. gustafson”. In: Ubiquity
2016.September (2016), pp. 1–16.

[23] John L Gustafson. Posit arithmetic. 2017. URL: https://www.posithub.org/
docs/Posits4.pdf (visited on 2021-02-12).

[24] John L Gustafson and Isaac T Yonemoto. “Beating floating point at its own game:
Posit arithmetic”. In: Supercomputing Frontiers and Innovations 4.2 (2017), pp. 71–
86.

[25] Posit Standard Documetation Release 4.9-draft. Posit Working Group. 2020-11-
10. URL: https : / / groups . google . com / g / unum - computing / c / 55Y -
YIwD0bs/m/SwZBuX2WBwAJ (visited on 2020-12-03).

[26] Survey of Posit Hardware and Software Development Efforts (July 2019). 2019.
URL: https://posithub.org/docs/PDS/PositEffortsSurvey.html (visited
on 2021-02-20).

[27] Isaac Yonemoto. interplanetary-robot/SigmoidNumbers. GitHub. 2018. URL: https:
//github.com/interplanetary-robot/SigmoidNumbers (visited on 2021-
03-25).

[28] John L Gustafson. Hacker News. 2017-04-02. URL: https://news.ycombinator.
com/item?id=14015194 (visited on 2021-01-25).

98

https://people.eecs.berkeley.edu/~wkahan/EndErErs.pdf
https://doi.org/10.1109/IEEESTD.2015.7140721
https://doi.org/10.14529/jsfi160203
https://doi.org/10.14529/jsfi160203
https://mathworld.wolfram.com/ProjectivelyExtendedRealNumbers.html
https://mathworld.wolfram.com/ProjectivelyExtendedRealNumbers.html
https://www.posithub.org/docs/Posits4.pdf
https://www.posithub.org/docs/Posits4.pdf
https://groups.google.com/g/unum-computing/c/55Y-YIwD0bs/m/SwZBuX2WBwAJ
https://groups.google.com/g/unum-computing/c/55Y-YIwD0bs/m/SwZBuX2WBwAJ
https://posithub.org/docs/PDS/PositEffortsSurvey.html
https://github.com/interplanetary-robot/SigmoidNumbers
https://github.com/interplanetary-robot/SigmoidNumbers
https://news.ycombinator.com/item?id=14015194
https://news.ycombinator.com/item?id=14015194

Bibliography

[29] Timothy Hickey, Qun Ju, and Maarten H Van Emden. “Interval arithmetic: From
principles to implementation”. In: Journal of the ACM (JACM) 48.5 (2001), pp. 1038–
1068.

[30] Eric W Weisstein. ”Infinitesimal.” From MathWorld–A Wolfram Web Resource.
URL: https://mathworld.wolfram.com/Infinitesimal.html (visited on
2021-06-16).

[31] Oliver Keszöcze et al. “Aarith: An Arbitrary Precision Number Library”. In: ACM/SIGAPP
Symposium On Applied Computing (virtual conference). 2021-03-22/2020-11-26.
DOI: 10.1145/3412841.3442085.

[32] Cerlane Leong. cerlane/SoftPosit. Gitlab. 2021. URL: https://gitlab.com/
cerlane/SoftPosit (visited on 2021-06-17).

[33] David Thien. DavidThien/softposit-rkt. GitHub. 2019. URL: https://github.
com/DavidThien/softposit-rkt (visited on 2021-06-17).

[34] Bill. billzorn/sfpy. GitHub. 2019. URL: https://github.com/billzorn/sfpy
(visited on 2021-06-17).

[35] Milan K. milankl/SoftPosit.jl. GitHub. 2020. URL: https://github.com/milankl/
SoftPosit.jl (visited on 2021-06-17).

[36] Clément Guérin. libcg/bfp. GitHub. 2019. URL: https://github.com/libcg/
bfp (visited on 2021-07-24).

[37] Emanuele Ruffaldi. eruffaldi/cppPosit. GitHub. 2019. URL: https://github.
com/eruffaldi/cppPosit (visited on 2021-07-24).

[38] E. Theodore L. Omtzigt et al. “Universal Numbers Library: design and implemen-
tation of a high-performance reproducible number systems library”. In: arXiv:2012.11011
(2020).

[39] Vandevoorde David and Nicolai M Josuttis. “C++ Templates: The Complete Guide”.
In: Addison-Wesley Professional (2017).

[40] Saba Akram and Quarrat Ul Ann. “Newton raphson method”. In: International
Journal of Scientific & Engineering Research 6.7 (2015), pp. 1748–1752.

[41] BC Carlson. “An algorithm for computing logarithms and arctangents”. In: Math-
ematics of Computation 26.118 (1972), pp. 543–549.

[42] Gerhard Merziger et al. Formeln + Hilfen: Höhere Mathematik. 7th ed. Binomi
Verlag, 2014-01.

[43] David Janzen and Hossein Saiedian. “Test-driven development concepts, taxon-
omy, and future direction”. In: Computer 38.9 (2005), pp. 43–50.

[44] Jeffrey Werner Bezanson. Julia: an efficient dynamic language for technical com-
puting. Massachusetts Institute of Technology, 2012.

[45] Mikko Tommila. apfloat. 2005-02-28. URL: http://www.apfloat.org/apfloat/
2.41/apfloat.pdf (visited on 2021-07-08).

99

https://mathworld.wolfram.com/Infinitesimal.html
https://doi.org/10.1145/3412841.3442085
https://gitlab.com/cerlane/SoftPosit
https://gitlab.com/cerlane/SoftPosit
https://github.com/DavidThien/softposit-rkt
https://github.com/DavidThien/softposit-rkt
https://github.com/billzorn/sfpy
https://github.com/milankl/SoftPosit.jl
https://github.com/milankl/SoftPosit.jl
https://github.com/libcg/bfp
https://github.com/libcg/bfp
https://github.com/eruffaldi/cppPosit
https://github.com/eruffaldi/cppPosit
http://www.apfloat.org/apfloat/2.41/apfloat.pdf
http://www.apfloat.org/apfloat/2.41/apfloat.pdf

Bibliography

[46] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK benchmark:
past, present and future”. In: Concurrency and Computation: practice and experi-
ence 15.9 (2003), pp. 803–820.

[47] Nicholas J Higham and Srikara Pranesh. “Simulating low precision floating-point
arithmetic”. In: SIAM Journal on Scientific Computing 41.5 (2019), pp. C585–
C602.

[48] Bill Young. CS429: Computer Organization and Architecture: Integers. Depart-
ment of Computer Science, University of Texas at Austin. 2019-06-10. URL: https:
//www.cs.utexas.edu/~byoung/cs429/slides3-integers-4up.pdf (vis-
ited on 2021-07-22).

[49] David Goldberg. “What every computer scientist should know about floating-point
arithmetic”. In: ACM computing surveys (CSUR) 23.1 (1991), pp. 5–48.

[50] Scott B. Baden. Lecture 17: Floating point. Carnegie Mellon University. 2016.
URL: https://www.andrew.cmu.edu/user/gkesden/ucsd/classes/wi17/
cse160-a/applications/ln/lecture17.pdf (visited on 2021-04-14).

[51] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.
Prentice Hall, 2010.

[52] Seungwon. bowbowbow/DecisionTree. GitHub. 2020. URL: https://github.
com/bowbowbow/DecisionTree (visited on 2021-05-14).

[53] Nick Silvestri. nsilvestri/cpp-raytracer. GitHub. 2018. URL: https://github.
com/nsilvestri/cpp-raytracer (visited on 2021-05-19).

[54] Andrew S Glassner. An Introduction to Ray Tracing. 1st ed. Morgan Kaufmann,
1989.

[55] Half-Precision Floating Point. GNU. 2021. URL: https : / / gcc . gnu . org /
onlinedocs/gcc/Half-Precision.html (visited on 2021-05-19).

[56] Arash Mohammadi et al. “OpenGA, a C++ Genetic Algorithm Library”. In: Sys-
tems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on. IEEE.
2017, pp. 2051–2056.

[57] John H Holland. “Genetic algorithms”. In: Scientific american 267.1 (1992), pp. 66–
73.

[58] Petr Rek and Lukas Sekanina. “TypeCNN: CNN Development Framework With
Flexible Data Types”. In: 2019 Design, Automation Test in Europe Conference
Exhibition (DATE). 2019, pp. 292–295. DOI: 10.23919/DATE.2019.8714855.

[59] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[60] Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. The C programming
language. 2nd ed. Prentice Hall Englewood Cliffs, 1988.

100

https://www.cs.utexas.edu/~byoung/cs429/slides3-integers-4up.pdf
https://www.cs.utexas.edu/~byoung/cs429/slides3-integers-4up.pdf
https://www.andrew.cmu.edu/user/gkesden/ucsd/classes/wi17/cse160-a/applications/ln/lecture17.pdf
https://www.andrew.cmu.edu/user/gkesden/ucsd/classes/wi17/cse160-a/applications/ln/lecture17.pdf
https://github.com/bowbowbow/DecisionTree
https://github.com/bowbowbow/DecisionTree
https://github.com/nsilvestri/cpp-raytracer
https://github.com/nsilvestri/cpp-raytracer
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://doi.org/10.23919/DATE.2019.8714855

Bibliography

[61] Eric W. Weisstein. Commutative. From MathWorld–A Wolfram Web Resource. URL:
https://mathworld.wolfram.com/Commutative.html (visited on 2021-05-
28).

[62] Eric W. Weisstein. Associative. From MathWorld–A Wolfram Web Resource. URL:
https://mathworld.wolfram.com/Associative.html (visited on 2021-05-
28).

[63] Eric W. Weisstein. Distributive. From MathWorld–A Wolfram Web Resource. URL:
https://mathworld.wolfram.com/Distributive.html (visited on 2021-05-
28).

101

https://mathworld.wolfram.com/Commutative.html
https://mathworld.wolfram.com/Associative.html
https://mathworld.wolfram.com/Distributive.html

	Introduction
	Unsigned Integers: You can Only Have so Many Bits
	Signed Integers: Duplicate Value Confusion
	Integer Fractions: Jagged Accuracy
	Fixed Point Numbers: Incompatible Magnitudes
	Floating Points: Scaled Fixed Point Numbers
	We Live with Machines that Lie

	Unum Arithmetic
	Unum Type I: Variable Accuracy Floating Points
	Unum Type II: Projective Reals and Sets of Real Numbers
	Unum Type III: Posit Arithmetic
	Unum Type III: Quires
	Unum Type III: Valid Arithmetic
	Summary

	A Definition of Valids
	Attempting Cell Arithmetic
	Valids Defined
	Valid Comparisons
	Attempting Addition Based on Type I Rules
	Error Interval Notation
	Addition Based on Error Intervals
	Subtraction Based on Addition
	Multiplication Based on Error Intervals
	Valid Division Based on Multiplication
	Summary

	Implementation
	Existing Libraries
	Programming Interface
	Intermediate Representations Simplify Arithmetic
	Reusing aarith Datatypes
	Keeping Track of Rounding
	Mathematical Functions
	Testing Strategy
	Summary

	Evaluation of the Implementation
	Standard Arithmetic: Add, Sub, Mul, Div
	Mathematical Functions
	Overhead Introduced By Valid Arithmetic
	Summary

	Evaluating Type III Unum Arithmetic
	Problems From Unum Literature
	Problems From Posit Literature
	Decimal Loss of a Unary Function
	Closure and Accuracy
	Commutativity, Associativity and Distributivity
	Exploiting the Unit Interval?
	Some Experiments on Valids
	Full Applications
	Summary

	Conclusion
	Value of Floating Point
	Posits Visualized
	Standard Floating Point and Posit Types
	Decimal Loss
	Properties of Binary Relations
	Bibliography

