
ulo-storage
Indexing and Querying Organizational Data in Mathematical Libraries

Andreas Schärtl
andreas.schaertl@fau.de

Organizational knowledge extracted from existing formal libraries has the
potential to be usable in the design of a universal search engine for math-
ematical research. However, it is not enough to merely collect and export
formal knowledge in a unified format, it is also necessary for this information
to be available for querying.

ulo-storage aims to lay out the groundwork for this task. We collected
various pieces of exported organizational knowledge into a centralized and
efficient store, made the resulting knowledge graph available on the network
and then evaluated different ways of querying that store. In addition, imple-
mentations of some exemplary queries on top of our created infrastructure
resulted in insights on how unified schemas for organizational mathematical
knowledge could be extended.

1

Erklärung. Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als
Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder
sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Declaration. I declare that the work is entirely my own and was produced with no
assistance from third parties. I certify that the work has not been submitted in the
same or any similar form for assessment to any other examining body and all references,
direct and indirect, are indicated as such and have been cited accordingly.

Andreas Schärtl, Erlangen, 2020/11/13

2

Contents

1. Introduction 4

2. Implementation 5
2.1. Components Implemented for ulo-storage 5
2.2. Collector and Importer . 6
2.3. Endpoint . 9
2.4. Deployment and Availability . 11
2.5. Summary . 12

3. Applications 12
3.1. Exploring Existing Data Sets . 12
3.2. Interactive Exploration . 14
3.3. Querying for Tetrapodal Search . 16
3.4. Summary . 20

4. Towards Manageable Ontologies 22
4.1. The Challenge of Universality . 22
4.2. A Layered Knowledge Architecture . 22

5. Conclusion 23

A. ULO Predicates Used in Coq and Isabelle Exports 25

3

1. Introduction

To tackle the vast array of mathematical publications, various ways of computerizing
mathematical knowledge have been experimented with. Already it is difficult for human
mathematicians to keep even a subset of all mathematical knowledge in their mind, a
problem referred to as the “one brain barrier” in literature [1]. A hope is that comput-
erization will yield great improvement to formal research by making the results of all
collected publications readily available and easy to search.

One topic of research in this field is the idea of a tetrapodal search that combines
four distinct areas of mathematical knowledge. These four kinds being (1) the actual
formulae as symbolic knowledge, (2) examples and concrete objects as concrete knowl-
edge, (3) prose, names and comments as narrative knowledge and finally (4) identifiers,
references and their relationships, referred to as organizational knowledge [2].

Tetrapodal search aims to provide a unified search engine that indexes each of these
four different subsets of mathematical knowledge. Because all four kinds of knowledge
are inherently unique in their structure, tetrapodal search proposes that each subset
of mathematical knowledge should be made available in a storage backend that fits
the kind of data it is providing. With all four areas available for querying, tetrapodal
search intends to then combine the four indexes into a single query interface. Currently,
research aims at providing schemas, storage backends and indexes for the four different
kinds of mathematical knowledge. In this context, the focus of ulo-storage is the area of
organizational knowledge.

A previously proposed way to structure organizational knowledge is the upper level
ontology (ULO) [3]. ULO takes the form of an OWL ontology [4] and as such all organi-
zation knowledge is stored as RDF triplets with a unified schema of ULO predicates [5].
Some effort has been made to export existing collections of formal mathematical knowl-
edge to ULO. In particular, exports from Isabelle and Coq-based libraries are available [6,
7, 8]. The resulting data set is already quite large, the Isabelle export alone containing
more than 200 million triplets.

Existing exports from Isabelle and Coq result in sets of XML files that contain
RDF triplets. This is a convenient format for exchange and easily tracked using version
control systems such as Git [9] as employed by MathHub [10]. However, considering the
vast number of triplets, it is impossible to query easily and efficiently in this state. This
is what ulo-storage is focused on, that is making ULO data sets accessible for querying
and analysis. We collected RDF files spread over different Git repositories, imported
them into a database and then experimented with APIs for accessing that data set.

The contribution of ulo-storage is twofold. First, (1) we built up various infrastruc-
ture components that make organizational knowledge easy to query. These components
can make up building blocks of a larger tetrapodal search system. Their design and
implementation are discussed in Section 2. Second, (2) we ran prototype applications
and queries on top of this infrastructure. While the applications are not useful in itself,
they can give us insight about future development of the upper level ontology and re-
lated schemas. These applications and queries are the focus of Section 3. A summary of

4

encountered problems and suggestions for next steps concludes this report in Section 5.

2. Implementation

One of the two contributions of ulo-storage is that we implemented components for
making organizational mathematical knowledge (formulated as RDF triplets) queryable.
This section first makes out the individual components involved in this task. We then
discuss the actual implementation created for this project.

2.1. Components Implemented for ulo-storage

Figure 1 illustrates how data flows through the different components. In total, we made
out three components that make up the infrastructure provided by ulo-storage.

• ULO triplets are present in various locations, be it Git repositories, web servers or
the local disk. It is the job of a Collector to assemble these RDF files and forward
them for further processing. This may involve cloning a Git repository or crawling
the file system.

• With streams of ULO files assembled by the Collector, these streams then get
passed to an Importer. The Importer then uploads RDF streams into some kind
of permanent storage. As we will see, the GraphDB [11] triple store was a natural
fit.

• Finally, with all triplets stored in a database, an Endpoint is where applications
access the underlying knowledge base. This does not necessarily need to be any
custom software, rather the programming interface of the underlying database
server itself can be understood as an Endpoint of its own.

Collector, Importer and Endpoint provide us with an automated way of making RDF
files available for use within applications. We will now take a look at the actual imple-
mentation created for ulo-storage, beginning with the implementation of Collector and
Importer.

Figure 1: Components involved in the ulo-storage system.

5

2.2. Collector and Importer

We previously described Collector and Importer as two distinct components. First, a
Collector pulls RDF data from various sources as an input and outputs a stream of
standardized RDF data. Second, an Importer takes such a stream of RDF data and
then dumps it to some sort of persistent storage. In our implementation, both Collector
and Importer ended up as one piece of monolithic software. This does not need to be
the case but proved convenient as combining Collector and Importer forgoes the needs
for an additional IPC mechanism between Collector and Importer. In addition, neither
our Collector nor Importer are particularly complicated pieces of software, as such there
is no pressing need to force them into separate processes.

Our implementation supports two sources for RDF files, namely Git repositories and
the local file system. The file system Collector crawls a given directory on the local
machine and looks for RDF XML files [12] while the Git Collector first clones a Git
repository and then passes the checked out working copy to the file system Collector.
Because we found that is not uncommon for RDF files to be compressed, our implemen-
tation supports on the fly extraction of gzip [13] and xz [14] formats which can greatly
reduce the required disk space in the collection step.

During development of the Collector, we found that existing exports from third party
mathematical libraries contain RDF syntax errors which were not discovered previously.
In particular, both Isabelle and Coq exports contained URIs which does not fit the
official syntax specification [15] as they contained illegal characters. Previous work [3]
that processed Coq and Isabelle exports used database software such as Virtuoso Open
Source [16] which does not properly check URIs according to spec; in consequence these
faults were only discovered now. To tackle these problems, we introduced on the fly
correction steps during collection that escape the URIs in question and then continue
processing. Of course this is only a work-around. Related bug reports were filed in the
respective export projects to ensure that in the future this extra step is not necessary.

The output of the Collector is a stream of RDF data. This stream gets passed to
the Importer which imports the encoded RDF triplets into some kind of persistent stor-
age. In theory, multiple implementations of this Importer are possible, namely different
implementations for different database backends. As we will see in Section 2.3, for our
project we selected the GraphDB triple store alone. The Importer merely needs to make
the necessary API calls to import the RDF stream into the database. As such the import
itself is straight-forward, our software only needs to upload the RDF file stream as-is to
an HTTP endpoint provided by our GraphDB instance.

To review, our combination of Collector and Importer fetches XML files from Git
repositories, applies on the fly decompression and fixes and then imports the collected
RDF triplets into persistent database storage.

2.2.1. Scheduling

Collector and Importer were implemented as library code that can be called from various
front ends. For this project, we provide both a command line interface as well as a

6

graphical web front end. While the command line interface is only useful for manually
starting single runs, the web interface (Figure 2) allows for more flexibility. In particular,
import jobs can be started either manually or scheduled to run at fixed intervals. The
web interface also persists error messages and logs.

2.2.2. Version Management

Automated job control leads us to the problem of versioning. In our current design,
given ULO exports Ei depend on original third party libraries Li. Running Ei through
the workflow of Collector and Importer, we get some database representation D. We see
that data flows

L1 → E1 → D
L2 → E2 → D

...

Ln → En → D

from n individual libraries Li into a single database storage D that is used for querying.
However, we must not ignore that mathematical knowledge is ever changing and not

static. When a given library Lti at revision t gets updated to a new version Lt+1
i , this

change will eventually propagate to the associated export and result in a new set of RDF
triplets E t+1

i . Our global database state D needs to get updated to match the changes
between E ti and E t+1

i .
Finding an efficient implementation for this problem is not trivial. While it should

be possible to compute the difference between two exports E ti and E t+1
i and infer the

changes necessary to be applied to D, the big number of triplets makes this appear
unfeasible. As this is a problem an implementer of a greater tetrapodal search system
will most likely encounter, we suggest the following approaches to tackle this challenge.

One approach is to annotate each triplet in D with versioning information about which
particular export E ti it was derived from. During an import from Esi into D, we could
(1) first remove all triplets in D that were derived from previous version Es−1

i and (2) then
re-import all triplets from the current version Esi . Annotating triplets with versioning
information is an approach that should work, but it does introduce O(n) additional
triplets in D where n is the number of triplets in D. After all, we need to annotate each
of the n triplets with versioning information, effectively doubling the required storage
space. A not very satisfying solution.

Another approach is to regularly re-create the full data set D from scratch, say every
seven days. This circumvents the problems related to updating existing data sets, but
also means that changes in a given library Li take some to propagate to D. Continuing
this train of thought, an advanced version of this approach could forgo the require-
ment for one single database storage D entirely. Instead of maintaining just one global
database state D, we suggest experimenting with dedicated database instances Di for
each given library Li. The advantage here is that re-creating a given database repre-
sentation Di is fast as exports Ei are comparably small. The disadvantage is that we

7

(a) Scheduling a new import job in the web interface.

(b) Reviewing a previous import job. This particular job failed, which illus-
trates how our web interface presents errors and logs.

Figure 2: The web interface for controlling the Collector and Importer components.
While Collector and Importer can also be used as library code or with a
command line utility, managing jobs in a web interface is probably the most
convenient.

8

still want to query the whole data set D = D1 ∪ D2 ∪ · · · ∪ Dn. This does require the
development of some cross-database query mechanism, functionality existing systems
currently only offer limited support for [17].

In summary, we see that versioning is a potential challenge for a greater tetrapodal
search system. While not a pressing issue for ulo-storage now, we consider it a topic of
future research.

2.3. Endpoint

Finally, we need to discuss how ulo-storage realizes the Endpoint. Recall that an End-
point provides the programming interface for applications that wish to query our col-
lection of organizational knowledge. In practice, the choice of Endpoint programming
interface is determined by the choice of database system as the Endpoint is provided
directly by the database system.

In our project, organizational knowledge is formulated as RDF triplets. The canonical
choice for us is to use a triple store, that is a database optimized for storing RDF
triplets [18, 19]. For our project, we used the GraphDB [11] triple store. A free version
that fits our needs is available at [20].

2.3.1. Transitive Queries

A notable advantage of GraphDB compared to other systems such as Virtuoso Open
Source [16, 3] is that GraphDB supports recent versions of the SPARQL query lan-
guage [21] and OWL Reasoning [22, 23]. In particular, this means that GraphDB offers
support for transitive queries as described in previous work on ULO [3]. A transitive
query is one that, given a relation R, asks for the transitive closure Sof R. (Figure 3).

In fact, GraphDB supports two approaches for realizing transitive queries. On one
hand, GraphDB supports the owl:TransitiveProperty [22, Section 4.4.1] property
that defines a given predicate P to be transitive. With P marked this way, querying
the knowledge base is equivalent to querying the transitive closure of P . This requires
transitivity to be hard-coded into the knowledge base. If we only wish to query the tran-
sitive closure for a given query, we can take advantage of so-called “property paths” [25]
which allow us to indicate that a given predicate P is to be understood as transitive
when querying. Only during querying is the transitive closure then evaluated. Either
way, GraphDB supports transitive queries without awkward workarounds necessary in
other systems [3].

2.3.2. SPARQL Endpoint

There are multiple approaches to querying the GraphDB triple store, one based around
the standardized SPARQL query language and the other on the RDF4J Java library.
Both approaches have unique advantages. Let us first take a look at SPARQL, which
is a standardized query language for RDF triplet data [26]. The specification includes

9

A

B E

C D F

G

(a) We can think of this tree as
visualizing a relation R where
(X,Y) ∈ R iff there is an edge
from X to Y .

A

B

C D

E

F

G

(b) Transitive closure S of relation R.
Additionally to each tuple from R
(solid edges), S also contains addi-
tional transitive (dotted) edges.

Figure 3: Illustrating the idea behind transitive closures. A transitive closure S of rela-
tion R is defined as the “minimal transitive relation that contains R” [24].

not just syntax and semantics of the language itself, but also a standardized REST
interface [27] for querying database servers.

The SPARQL syntax was inspired by SQL and as such the SELECT WHERE syntax
should be familiar to many software developers. A simple query that returns all triplets
in the store looks like

SELECT * WHERE { ?s ?p ?o }

where ?s, ?p and ?o are query variables. The result of any query are valid substitutions
for all query variables. In this particular case, the database would return a table of all
triplets in the store sorted by subject ?o, predicate ?p and object ?o.

Probably the biggest advantage is that SPARQL is ubiquitous. As it is the de facto
standard for querying triple stores, lots of implementations (client and server) as well as
documentation are available [28, 29, 30].

2.3.3. RDF4J Endpoint

SPARQL is one way of accessing a triple store database. Another approach is RDF4J,
a Java API for interacting with RDF graphs, implemented based on a superset of the
SPARQL REST interface [31]. GraphDB is one of the database servers that supports
RDF4J, in fact it is the recommended way of interacting with GraphDB repositories [32].

Instead of formulating textual queries, RDF4J allows developers to query a knowledge

10

base by calling Java library methods. Previous query that asks for all triplets in the
store looks like

connection.getStatements(null , null , null);

in RDF4J. getStatements(s, p, o) returns all triplets that have matching subject s,
predicate p and object o. Any argument that is null can be substituted with any value,
that is it is a query variable to be filled by the call to getStatements.

Using RDF4J does introduce a dependency on the JVM and its languages. But in
practice, we found RDF4J to be quite convenient, especially for simple queries, as it
allows us to formulate everything in a single programming language rather than mixing
programming language with awkward query strings. We also found it quite helpful to
generate Java classes from OWL ontologies that contain all definitions of the ontology
as easily accessible constants [33]. This provides us with powerful IDE auto completion
features during development of ULO applications.

Summarizing the last two sections, we see that both SPARQL and RDF4J have unique
advantages. While SPARQL is an official W3C [34] standard and implemented by
more database systems, RDF4J can be more convenient when dealing with JVM-based
projects. For ulo-storage, we played around with both interfaces and chose whatever
seemed more convenient at the moment. We recommend any implementors to do the
same.

2.4. Deployment and Availability

Software not only needs to get developed, but also deployed. To deploy the combination
of Collector, Importer and Endpoint, we use Docker Compose. Docker itself is a tech-
nology for wrapping software into containers, that is lightweight virtual machines with a
fixed environment for running a given application [35, pp. 22]. Docker Compose then is
a way of combining individual Docker containers to run a full tech stack of application,
database server and so on [35, pp. 42]. All configuration of the overarching setup is
stored in a Docker Compose file that describes the software stack.

For ulo-storage, we provide a single Docker Compose file which starts three contain-
ers, namely (1) the Collector/Importer web interface, (2) a GraphDB instance which
provides us with the required Endpoint and (3) some test applications that use that
Endpoint. All code for Collector and Importer is available in the ulo-storage-collect

Git repository [36]. Additional deployment files, that is Docker Compose configuration
and additional Dockerfiles are stored in a separate repository [37].

2.5. Summary

With this, we conclude our discussion of the implementation developed for the ulo-
storage project. We designed a system based around (1) a Collector which collects RDF
triplets from third party sources, (2) an Importer which imports these triplets into a
GraphDB database and (3) looked at different ways of querying a GraphDB Endpoint.
All of this is easy to deploy using a single Docker Compose file.

11

Our concrete implementation is useful in so far as that we can use it to experiment
with ULO data sets. But development also provided insight about (1) which components
this class of system requires and (2) which problems need to be solved. One topic we
discussed at length is version management. It is easy to dismiss this in these early stages
of development, but no question it is something to keep in mind.

3. Applications

With programming endpoints in place, we can now query the data set containing both
Isabelle and Col exports stored in GraphDB. We experimented with the following appli-
cations that talk to a GraphDB Endpoint, our second contribution.

• Exploring which ULO predicates are actually used in the existing Coq and Isabelle
exports. We find that more than two thirds of existing ULO predicates were not
taken advantage of (Section 3.1).

• Providing an interactive interface for browsing the data set. Our implementation is
limited to listing basic information about contributors and their work (Section 3.2).

• We investigated queries that could be used to extend the system into a larger
tetrapodal search system. While some organizational queries have obvious canon-
ical solutions, others introduce questions on how organizational knowledge should
be structured (Section 3.3).

We will now discuss each application in more detail.

3.1. Exploring Existing Data Sets

For our first application, we looked at which ULO predicates are actually used by the
respective data sets. With more than 250 million triplets in the store, we hoped that
this would give us some insight into the kind of knowledge we are dealing with.

Implementing a query for this job is not very difficult. In SPARQL, this can be
achieved with the COUNT aggregate, the full query is given in verbatim in Figure 4a.
Our query yields a list of all used predicates together with the number of occurrences
(Figure 4b). Looking at the results, we find that both the Isabelle and the Coq data
sets only use subsets of the predicates provided by ULO. The full results are listed in
Appendix A. In both cases, what stands out is that either export uses less than a third
of all available ULO predicates.

We also see that the Isabelle and Coq exports use different predicates. For example,
the Isabelle export contains organizational meta information such as information about
paragraphs and sections in the source document while the Coq export only tells us the
filename of the original Coq source. Both exports have their particularities and with
more and more third party libraries exported to ULO, one has to assume that this
heterogeneity will only grow. In particular we want to point to the large number of

12

PREFIX ulo: <https :// mathhub.info/ulo#>

SELECT ?predicate (COUNT(? predicate) as ?count)

WHERE {

?s ?predicate ?o .

}

GROUP BY ?predicate

ORDER BY DESC(?count)

(a) SPARQL query that returns a list of all predicates used in the backing store. We
include the ulo prefix such that the results are printed in a concise human readable
format.

predicate count

1 ulo:uses 1160140
2 ulo:declares 88862
3 ulo:internal-size 82336
4 ulo:derived 69017
5 ulo:statement 44638
6 ulo:object 15179
7 ulo:primitive 14459
8 ulo:proposition 10437
...

...
...

(b) Result of query from Figure 4a. The database returns a list of all involved
predicates ordered by their count. The particular results here are from the core
Coq export [38].

Figure 4: Querying the predicates in use in a given data set.

predicates which remain unused in both Isabelle and Coq exports. A user formulating
queries for ULO might be oblivious to the fact that only subsets of exports support given
predicates.

We expect the difference between Coq and Isabelle exports to be caused by the differ-
ence in source material. It is only natural that different third party libraries expressed
in different languages with different capabilities will result in different ULO predicates.
Regardless, we want to hint at the possibility that this could also be an omission in the
exporter code that originally generated the RDF triplets. This shows the importance
of writing good exporters. Exporters translating existing libraries to ULO triplets must
lose as little information as possible to ensure good results in a larger tetrapodal search
system.

Our first application gave us an initial impression of the structure of currently available

13

(a) Listing all contributors in the data set.
Clicking on a given author shows their in-
dividual contributions.

(b) Listing works a given contributor has
worked on.

(c) Examining a single node in the data set.
From ulo:sourceref we can infer the
original URI of this object.

(d) The original source code for a given node
in our data set.

Figure 5: Exploring the Isabelle export [7] with a rudimentary web interface. A demo
of this tool is available at https://ulordf4j.mathhub.info.

organizational knowledge formulated in ULO triplets. Whether caused by the difference
in formal language or because of omissions in code that produces ULO triplets, we must
not expect predicates to be evenly distributed in the data set. This is something to keep
in mind, especially as the number of ULO exports increases.

3.2. Interactive Exploration

The second application we want to discuss illustrates how to browse an ULO data set
interactively. Here, we developed a web front end that allows users to browse contribu-
tions to the knowledge base sorted by author. Figure 5 shows four screenshots of the
current version, a public demo is available at https://ulordf4j.mathhub.info.

In this particular case, we used the RDF4J Endpoint, the application itself is imple-
mented in Java. Once the user has selected a given contribution, we list some basic
information about the selected object, such as type (e.g. lemma or corollary) and name
as well as references to other objects in the knowledge base.

14

https://ulordf4j.mathhub.info
https://ulordf4j.mathhub.info

This experiment is interesting because similar approaches could be applied when de-
signing IDE integration for working with organizational knowledge. Given some object
in a document identified by an URI, we can look at how that object is connected to
other objects in the knowledge graph.

Our front end can also connect the dots back from ULO object to original source
code. In particular, we took a look at the ulo:sourceref predicate defined for many
objects in the knowledge base. ulo:sourceref is supposed to contain “the URI of the
physical location (e.g., file/URI, line, column) of the source code that introduced the
subject” [4]. But while making the connection from exported ULO object to original
Isabelle document is convenient for the user, this feature required some extra work
from us as application implementors. The reason for this is that the format of the
ulo:sourceref property appears to be not well-defined, rather it is up to implementors
of library exporters how to format these source references. For example, in the Isabelle
export [7], we have to translate source references such as

https://isabelle.in.tum.de/source/HOL/HOL-Algebra/

HOL-Algebra.Group.theory#17829.576.8:17836.576.15

to the original source

https://isabelle.in.tum.de/dist/library/HOL/HOL-Algebra/Group.html

The consequence is that for each export, developers of front ends will need to write
custom code for finding the original source. Maybe it would be a reasonable requirement
for ulo:sourceref to have a well-defined format, ideally an actually reachable URI on
the open web, if that is applicable for a given library.

While translating from ulo:sourceref to original URI introduced some extra work,
implementing this application was straight-forward. With this we showed that searching
through metadata in existing ULO data sets is already quite feasible. Implementing
similar features for other environments should not be very difficult.

3.3. Querying for Tetrapodal Search

Various queries for a tetrapodal search system were previously suggested in literature [2].
We will now investigate how three of them could be realized with the help of ULO data
sets and where other data sources are required. Where possible, we construct proof of
concept implementations and evaluate their applicability.

3.3.1. Elementary Proofs and Computed Scores

We start with query Q1 which illustrates how we can compute arithmetic scores for ob-
jects in our knowledge graph. Query Q1 asks us to “[f]ind theorems with non-elementary
proofs” [2]. Elementary proofs can be understood as those proof that are considered easy
and obvious [39, 40]. In consequence, Q1 has to search for all proofs which are not trivial.
Of course, just like any distinction between “theorem” and “corollary” is going to be
somewhat arbitrary, so is any judgment about whether a proof is easy or not. While we

15

do understand elementary as easy here, we must not omit that there also exist concrete
definitions of “elementary proofs” in certain subsets of mathematics [39, 41, 42]. As
we will see, our naive understanding of elementary proofs results in interesting insights
regardless.

Existing research on proof difficulty is either very broad or specific to one problem. For
example, some experiments showed that students and prospective school teachers had
problems with notation and term rewriting and were missing required prerequisites [43,
44], none of which seems applicable for grading individual formal proofs for difficulty.
On the other hand, there is very specific research on rating proofs for concrete problems
such as the satisfiability of a given CNF formula [45].

Organizational Aspect. A working hypothesis might be to assume that elementary
proofs are short. In that case, the size, that is the number of bytes to store the proof,
is our first indicator of proof complexity. This is by no means perfect, as even identical
proofs can be represented in different ways that have vastly different size in bytes. It
might be tempting to imagine a unique normal form for each proof, but finding such a
normal form may very well be impossible. As it is very difficult to find a generalized
definition of proof difficulty, we will accept proof size as a first working hypothesis.

ULO offers the ulo:external-size predicate which will allow us to sort by file size.
Maybe proof complexity also leads to quick check times in proof assistants and automatic
theorem provers. With this assumption in mind we could use the ulo:check-time

predicate. Correlating proof complexity with file size or check time allows us to define
one indicator of proof complexity based on organizational knowledge alone.

Other Aspects. A tetrapodal search system should probably also take symbolic knowl-
edge into account. Based on some kind of measure of formula complexity, different proofs
could be rated. Similarly, with narrative knowledge available to us, we could count the
number of words, citations and so on to rate the narrative complexity of a proof. Com-
bining symbolic knowledge, narrative knowledge and organizational knowledge should
allow us to find proofs which are easier than others.

Implementation. Implementing a naive version of the organizational aspect can be as
simple as querying for all theorems justified by proofs, ordered by size (or check time).
Figure 6a illustrates how this can be achieved with a SPARQL query. But maybe we
wish to go one step further and calculate a rating that assigns each proof some numeric
score of complexity based on a number of properties. We can achieve this in SPARQL
as recent versions support arithmetic as part of the SPARQL specification; Figure 6b
shows an example. Finding a reasonable rating is its own topic of research, but we see
that as long as it is based on standard arithmetic, it will be possible to formulate in a
SPARQL query.

The queries in Figure 6 return a list of all theorems and associated proofs. Naturally,
this list is bound to be very long. A suggested way to solve this problem is to introduce
some kind of cutoff value for our complexity score. Another potential solution is to
only list the first n results, something a user interface would have to do either way (i.e.
pagination [46]). Either way, this is not so much an issue for the organizational storage
engine and more one that a tetrapodal search aggregator has to account for.

16

PREFIX ulo: <https :// mathhub.info/ulo#>

SELECT ?theorem ?proof ?size

WHERE {

?theorem ulo:theorem ?i .

?proof ulo:justifies ?theorem .

?proof ulo:proof ?j .

?proof ulo:external -size ?size .

}

ORDER BY DESC(?size)

(a) SPARQL query that returns each pair of theorem and one given proof, ordered by
the size of proof.

PREFIX ulo: <https :// mathhub.info/ulo#>

PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

SELECT ?theorem ?proof ?size (

xsd:float(?size) + xsd:float(? checktime) as ?

rating

)

WHERE {

?theorem ulo:theorem ?i .

?proof ulo:justifies ?theorem .

?proof ulo:proof ?j .

?proof ulo:external -size ?size .

?proof ulo:check -time ?checktime .

}

ORDER BY DESC(? rating)

(b) SPARQL query that returns each pair of theorem and one given proof ordered
by the sum of size and check time of the given proof. A naive rating such as this
one will hardly yield helpful results, but it shows that given some kind of numeric
complexity scale, we can rate theorems and their proofs by such a scale.

Figure 6: SPARQL queries for serving the organizational aspect of Q1.

17

Another problem is that computing these scores can be quite time intensive. Even if
calculating a score for one given object is fast, doing so for the whole data set might
quickly turn into a problem. In particular, if we wish to show the n objects with best
scores, we do need to compute scores for all relevant objects first. In ulo-storage, all scores
we experimented with were easy enough and the data sets small enough such that this
did not become a concrete problem. But in a larger tetrapodal search system, caching
results that were computed lazily or ahead of time will probably be a necessity. Which
component takes care of keeping this cache is not clear right now, but we advocate
for keeping caches of previously computed scores separate from the core ulo-storage
Endpoint such that the Endpoint can be easily updated.

Understanding query Q1 in the way we did makes it difficult to present a definite
solution. However while thinking aboutQ1 we found out that the infrastructure provided
by ulo-storage allows us to compute arbitrary arithmetic scores, something that will
surely be useful for many applications.

3.3.2. Categorizing Algorithms and Algorithmic Problems

The second query Q2 we decided to focus on wants to “[f]ind algorithms that solve
NP -complete graph problems” [2]. Here we want the tetrapodal search system to re-
turn a listing of algorithms that solve (graph) problems with a given property (runtime
complexity). We need to consider where and how each of these components might be
found.

Symbolic and Concrete Aspects. First, let us consider algorithms. Algorithms can
be formulated as computer code which can be understood as symbolic knowledge (code
represented as a syntax tree) or as concrete knowledge (code as text files) [2, pp. 8–9,
47]. Either way, we will not be able to query these indices for what problem a given
algorithm is solving, nor is it possible to infer properties as complex as NP -completeness
automatically in the general case [48]. Metadata of this kind needs to be stored in a
separate index for organizational knowledge, it being the only fit.

Organizational Aspect. If we wish to look up properties about algorithms from orga-
nizational knowledge, we first have to think about how to represent this information. As
a first approach, we can try to represent algorithms and problems in terms of existing
ULO predicates. As ULO does have a concept of ulo:theorem and ulo:proof, it might
be tempting to exploit these predicates and represent algorithms understood as pro-
grams in terms of proofs. But that does not really capture the canonical understanding
of algorithms. Algorithms are not actually programs, rather there are programs that
implement algorithms. Even if we do work around this problem, it is not clear how to
represent problems (e.g. the traveling salesman problem or the sorting problem) in terms
of theorems (propositions, types) that get implemented by a proof (algorithm, program).

As algorithms make up an important part of certain areas of research, it might be
reasonable to introduce native level support for algorithms in ULO or separately in
another ontology. An argument for adding support directly to ULO is that ULO aims
to be universal and as such should not be without algorithms. An argument for a
separate ontology is that what we understand as ULO data sets (Isabelle, Coq exports)

18

already contain predicates from other ontologies (e.g. Dublin Core metadata [49, 50]).
In addition, keeping concepts separated in distinct ontologies is not entirely unattractive
in itself as it can be less overwhelming for a user working with these ontologies.

In summary, we see that it is difficult to service Q2 even though the nature of this
query is very much one of organizational knowledge. It is probably up to the implemen-
tors of future ULO exports to find a good way of encoding algorithmic problems and
solutions. Perhaps a starting point on this endeavor would be to find a formal way of
structuring information gathered on sites like Rosetta Code [51], a site that provides
concrete programs that solve algorithmic problems.

3.3.3. Contributors and Number of References

Finally, query Q3 from literature wants to know “[a]ll areas of math that Nicolas G.
de Bruijn has worked in and his main contributions” [2]. Q3 is asking for works of a
given author A. It also asks for their main contributions, for example which particularly
interesting paragraphs or code A has authored. We picked this particular query as
it is asking for metadata, something that should be easily serviced by organizational
knowledge.

Organizational Aspect. ULO has no concept of authors, contributors, dates and so
on. Rather, the idea is to take advantage of the Dublin Core project which provides
an ontology for such metadata [49, 50]. For example, Dublin Core provides us with the
dcterms:creator and dcterms:contributor predicates. Servicing Q3 requires us to
look for creator A and then list all associated objects that they have worked on. Of
course this requires above authorship predicates to actually be in use. With the Isabelle
and Coq exports this was hardly the case; running some experiments we found less than
15 unique contributors and creators, raising suspicion that metadata is missing in the
original library files. Regardless, existing ULO exports allow us to query for objects
ordered by authors.

Implementation. A search for contributions by a given author can easily be formulated
in SPARQL (Figure 7a). Query Q3 is also asking for the main contributions of A, that is
those works that A authored that are the most important. Sorting the result by number
of references can be a good start. To get the main contributions, we rate each individual
work by its number of ulo:uses references. Extending the previous SPARQL query,
we can ask the database for an ordered list of works, starting with the one that has the
most references (Figure 7b). We see that one can formulate Q3 with just one SPARQL
query. Because everything is handled by the database, access should be about as quick
as we can hope it to be.

While the sparse data set available to use only returned a handful of results, we showed
that queries such as Q3 are easily serviced with organizational knowledge formulated in
ULO triplets. More advanced queries could look at the interlinks between authors and
even uncover “citation cartels” as was done previously with similar approaches [52].

19

PREFIX ulo: <https :// mathhub.info/ulo#>

PREFIX dcterms: <http :// purl.org/dc/terms/>

SELECT ?work

WHERE {

?work dcterms:creator|dcterms:contributor "

John Smith" .

}

GROUP BY ?work

(a) SPARQL query that asks for all works created by an author named “John Smith”.
ULO does not come with predicates for creator or contributor, instead the available
data sets take advantage of the dcterms namespace [50].

PREFIX ulo: <https :// mathhub.info/ulo#>

PREFIX dcterms: <http :// purl.org/dc/terms/>

SELECT ?work (COUNT (?user) as ?refcount)

WHERE {

?work dcterms:creator|dcterms:contributor "

John Smith" .

?user ulo:uses ?work .

}

GROUP BY ?work

ORDER BY DESC(? refcount)

(b) An adapted SPARQL query based on 7a. It lists all works authored by “John
Smith” rated by number of references. The idea is that works that were referenced
more often are more important.

work refcount

1 https://isabelle.in.tum.de?HOL-Algebra.Group?... 17
2 https://isabelle.in.tum.de?HOL-Algebra.Group?... 17
3 https://isabelle.in.tum.de?HOL-Algebra.Group?... 11
...
...

...

(c) Result of query from Figure 7b. In this particular case we asked for all contributions
from “Paulo Emı́lio de Vilhena” in the Isabelle AFP export [7]. Our database
Endpoint returns a listing of works sorted by their refcount. It would be the
job of a tetrapodal search interface to translate these export-specific URIs into
accessible references into the original source documents.

Figure 7: SPARQL queries for answering questions about authorship and main contri-
butions.

20

3.4. Summary

Experimenting with Q1 to Q3 provided us with some insight into ULO and existing
ULO exports. Q1 shows that while there is no universal definition for “elementary
proof”, ULO allows us to query for heuristics and calculate arbitrary arithmetic scores
for objects of organizational knowledge. Query Q2 illustrates the difficulty in finding
universal schemas. It remains an open question whether ULO should include algorithms
as a first class citizen, as a concept based around existing ULO predicates or whether
it is a better idea to design a dedicated ontology and data store entirely. Finally, while
we were able to formulate a SPARQL query that should take care of most of Q3, we
found that the existing data sets contain very little information about authorship. This
underlines the observations made previously in Section 3.1 and should be on the mind
of anyone writing exporters that output ULO triplets.

4. Towards Manageable Ontologies

Before finishing up this report with a general conclusion, we want to first dedicate a
section to thoughts on the upper level ontology and ontology design in general. The
contribution of this section is primarily of of potential for future work. At this point in
time, the ideas formulated here lack concrete implementations.

4.1. The Challenge of Universality

ULO aims to be a universal language for capturing organizational mathematical knowl-
edge. An outstandingly difficult task. ULO is aiming at nothing less than a universal
schema on top of all collected (organizational) mathematical knowledge.

The current version of ULO already yields worthwhile results when formal libraries
are exported to ULO triplets. Especially when it comes to metadata, querying such data
sets proved to be easy. But an ontology such as ULO can only be a real game changer
when it is truly universal, that is, when it is easy to formulate any kind of organizational
knowledge in the form of a ULO data set.

As such it should not be terribly surprising that ULO forgoes the requirement of
being absolutely correct. For example, what a ulo:theorem actually represent can differ
depending on where the mathematical knowledge was originally extracted from. While
at first this might feel a bit unsatisfying, it is important to realize that the strength
of ULO data sets must be search and discovery. Particularities about meaning will
eventually need to be resolved by more concrete and specific systems.

While that is not the hardest pill to swallow, it would be preferable to maintain
organizational knowledge in a format that is both (1) as correct as possible and (2) easy
to generalize and search. Future development of the upper level ontology first needs to
be very clear on where it wants to position itself on this spectrum between accuracy and
generalizability. In its position as an upper level ontology, we believe that ULO is best
positioned as an ontology that favors generality at the cost of accuracy. It can serve

21

Algorithm Library Universal Library Integer Library

Algorithm Ontology Integer Ontology

Upper Level Ontology

Figure 8: The idea behind layered ontologies is that instead of translating directly from
formal library to ULO triplets, we would translate into intermediate ontologies
specific to a given domain. These individual ontologies could then be compiled
to ULO in an additional step.

as a generalized way of indexing vast amounts of formal knowledge, making it easy to
discover and connect.

4.2. A Layered Knowledge Architecture

ULO as one concrete ontology will need to converge on one specific point on the accuracy-
generalizability spectrum, namely at the place where generalizability is chosen in favor
of accuracy. But this does not mean that we need to give up on accuracy as a whole.
We believe that we can have both, we can have our cake and eat it it too.

Current exports investigated in this report take the approach of taking some library of
formal knowledge and then converting that library directly into ULO triplets. Perhaps
a better approach would be to use a layered architecture instead. The idea is sketched
out in Figure 8. In this layered architecture, we would first convert a given third party
library into triplets defined by an intermediate ontology. These triplets could then be
compiled to ULO triplets for search. It is an approach not unlike intermediate byte
codes used in compiler construction [53, pp. 357]. While lower layers preserve more
detail, higher levels are more general and easier to search.

A valid criticism to this would be that we can understand the base library as an
ontology of its own. In practice, the only difference is the file format. While formal
libraries are formulated in some domain specific formal language, when we talk about
ontologies, our understanding is that of OWL ontologies, that is RDF predicates with
which knowledge is formulated. But RDF is easier to index using triple store databases
such as GraphDB. And it should be easier to architecture a search system based around
a unified format (RDF) rather than a zoo of formats and languages.

But a final judgment requires further investigation. Either way, we find it is necessary

22

to take the accuracy-generalizability spectrum into account and investigate how this
spectrum can be serviced with different layers of ontologies.

5. Conclusion

Using the ulo-storage software stack introduced in Section 2 we were able to take ex-
isting RDF exports and import them into a GraphDB database. This made it possible
to experiment with the applications and examples of Section 3. We showed that or-
ganizational knowledge formulated as ULO triplets can already give some insights. In
particular, it is possible to formulate queries about meta information such as authorship
and contribution. We also manged to resolve the interlinks between proofs and theorems.

Despite many remaining open questions, ulo-storage provides the necessary infrastruc-
ture for importing ULO triplets into an efficient storage engine. A necessary building
block for a larger tetrapodal search system. In addition to the concrete implementation,
the experiences we have made along the way should benefit future research towards a
greater tetrapodal search system.

23

A. ULO Predicates Used in Coq and Isabelle Exports

Only a subset of the upper level ontology are actually taken advantage of in the existing
Coq and Isabelle exports. This section lists which predicates are used and wich are not.

ULO Predicates used in the Isabelle Exports [7]

check-time defines definition derived experimental external-size function

important inductive-on instance-of justifies name para paratype predicate

primitive section sourceref specified-in specifies statement theory type

unimportant universe uses

ULO Predicates not used in the Isabelle Exports [7]

action-times aligned-with alternative-for antonym automatically-proved

axiom constructs contains counter-example-for crossrefs declaration

deprecated docref example example-for file folder formalizes generated-by

hypernym hyponym implementation-uses implementation-uses-implementation-of

implementation-uses-interface-of inspired-by inter-statement

interface-uses interface-uses-implementation-of

interface-uses-interface-of internal-size last-checked-at library

library-group logical mutual-block nyms organizational phrase physical

proof proposition revision rule same-as see-also similar-to size-properties

superseded-by theorem typedec uses-implementation uses-interface

ULO Predicates used in the Coq Exports [8]

axiom definition derived example file folder internal-size library

library-group predicate primitive proposition revision statement theory

type uses

ULO Predicates not used in the Coq Exports [8]

action-times aligned-with alternative-for antonym automatically-proved

check-time constructs contains counter-example-for crossrefs declaration

defines deprecated docref example-for experimental external-size formalizes

function generated-by hypernym hyponym implementation-uses

implementation-uses-implementation-of implementation-uses-interface-of

important inductive-on inspired-by instance-of inter-statement

interface-uses interface-uses-implementation-of

interface-uses-interface-of justifies last-checked-at logical mutual-block

name nyms organizational para paratype phrase physical proof rule same-as

section see-also similar-to size-properties sourceref specified-in

specifies superseded-by theorem typedec unimportant universe

uses-implementation uses-interface

24

References

[1] Michael Kohlhase. “Mathematical knowledge management: transcending the one-
brain-barrier with theory graphs.” In: European Mathematical Society (EMS) Newslet-
ter 92 (2014), pp. 22–27.

[2] Katja Bercic, Michael Kohlhase, and Florian Rabe. Towards a Heterogeneous
Query Language for Mathematical Knowledge: Extended Report. url: https://
kwarc.info/people/mkohlhase/papers/tetrasearch.pdf (visited on 24/06/2020).

[3] Andrea Condoluci et al. “Relational data across mathematical libraries.” In: Inter-
national Conference on Intelligent Computer Mathematics. Springer. 2019, pp. 61–
76.

[4] ulo. MathHub. 2019. url: https://gl.mathhub.info/ulo/ulo (visited on
07/07/2020).

[5] Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press,
2004. Chap. 4, pp. 113–152.

[6] Michael Kohlhase, Florian Rabe, and Makarius Wenzel. Making Isabelle Con-
tent Accessible in Knowledge Representation Formats. 2020. arXiv: 2005.08884
[cs.LO].

[7] Isabelle: Libraries of the Isabelle proof assistant in OMDoc/MMT representation.
MathHub. 2019. url: https://gl.mathhub.info/Isabelle (visited on 10/06/2020).

[8] XML Coq Exports. MathHub. 2019. url: https://gl.mathhub.info/Coqxml
(visited on 16/06/2020).

[9] Junio C Hamano. “GIT–A stupid content tracker.” In: Proc. Ottawa Linux Sympo
1 (2006), pp. 385–394.

[10] Mihnea Iancu et al. “System description: MathHub. info.” In: Intelligent Computer
Mathematics. Springer, 2014, pp. 431–434.

[11] GraphDB 9.3 documentation. Ontotext. 2020. url: http://graphdb.ontotext.
com/documentation/free/ (visited on 16/06/2020).

[12] RDF 1.1 XML Syntax. W3C. 2014. url: https://www.w3.org/TR/rdf-syntax-
grammar/ (visited on 17/08/2020).

[13] Peter Deutsch et al. GZIP file format specification version 4.3. Tech. rep. RFC
1952, May, 1996.

[14] L Collin and I Pavlov. The. xz file format. 2009. url: https://tukaani.org/xz/
xz-file-format.txt (visited on 17/08/2020).

[15] Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource Iden-
tifier (URI): Generic Syntax. RFC 3986. Jan. 2005. doi: 10.17487/RFC3986. url:
https://rfc-editor.org/rfc/rfc3986.txt (visited on 17/08/2020).

[16] Virtuoso Open-Source Wiki. Virtuoso Open-Source Edition. url: http://vos.
openlinksw.com/owiki/wiki/VOS (visited on 27/09/2020).

25

https://kwarc.info/people/mkohlhase/papers/tetrasearch.pdf
https://kwarc.info/people/mkohlhase/papers/tetrasearch.pdf
https://gl.mathhub.info/ulo/ulo
https://arxiv.org/abs/2005.08884
https://arxiv.org/abs/2005.08884
https://gl.mathhub.info/Isabelle
https://gl.mathhub.info/Coqxml
http://graphdb.ontotext.com/documentation/free/
http://graphdb.ontotext.com/documentation/free/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://tukaani.org/xz/xz-file-format.txt
https://tukaani.org/xz/xz-file-format.txt
https://doi.org/10.17487/RFC3986
https://rfc-editor.org/rfc/rfc3986.txt
http://vos.openlinksw.com/owiki/wiki/VOS
http://vos.openlinksw.com/owiki/wiki/VOS

[17] Nested Repositories. Ontotext. 2020. url: http : / / graphdb . ontotext . com /

documentation/standard/nested-repositories.html (visited on 23/09/2020).

[18] What is RDF Triplestore? Ontotext. 2020. url: https://www.ontotext.com/
knowledgehub/fundamentals/what-is-rdf-triplestore/ (visited on 17/08/2020).

[19] Triple Store. W3C. 2001. url: https://www.w3.org/2001/sw/Europe/events/
20031113-storage/positions/rusher.html (visited on 17/08/2020).

[20] GraphDB Feature Comparison. Ontotext. 2020. url: http://graphdb.ontotext.
com / documentation / free / graphdb - feature - comparison . html (visited on
17/08/2020).

[21] SPARQL Compliance. Ontotext. 2020. url: http://graphdb.ontotext.com/
documentation/standard/sparql-compliance.html (visited on 27/09/2020).

[22] Sean Bechhofer et al. “OWL web ontology language reference.” In: W3C recom-
mendation 10.02 (2004). url: https://www.w3.org/TR/owl-ref/ (visited on
27/09/2020).

[23] Reasoning. Ontotext. 2020. url: http://graphdb.ontotext.com/documentation/
standard/sparql-compliance.html (visited on 27/09/2020).

[24] Eric W. Weisstein. Transitive Closure. url: https://mathworld.wolfram.com/
TransitiveClosure.html (visited on 27/09/2020).

[25] W3C. 2009. url: https://www.w3.org/2009/sparql/wiki/Feature:PropertyPaths
(visited on 27/09/2020).

[26] SPARQL Query Language for RDF. W3C. 2009. url: https://www.w3.org/TR/
rdf-sparql-query/ (visited on 10/06/2020).

[27] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures. Vol. 7. University of California, Irvine Irvine,
2000.

[28] Bob DuCharme. Learning SPARQL: querying and updating with SPARQL 1.1. ”
O’Reilly Media, Inc.”, 2013.

[29] SparqlImplementations. W3C. url: https://www.w3.org/wiki/SparqlImplementations
(visited on 06/07/2020).

[30] package sparql. godoc.org. 2019. url: https://godoc.org/github.com/knakk/
sparql (visited on 10/06/2020).

[31] Eclipse rdf4j. The Eclipse Foundation. 2020. url: https://rdf4j.org/ (visited
on 10/06/2020).

[32] Using GraphDB with the RDF4J API. Ontotext. 2020. url: http://graphdb.
ontotext.com/documentation/free/using-graphdb-with-the-rdf4j-api.

html (visited on 10/06/2020).

[33] Peter Ansell. ansell/rdf4j-schema-generator. url: https://github.com/ansell/
rdf4j-schema-generator (visited on 02/07/2020).

26

http://graphdb.ontotext.com/documentation/standard/nested-repositories.html
http://graphdb.ontotext.com/documentation/standard/nested-repositories.html
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/
https://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
https://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
http://graphdb.ontotext.com/documentation/free/graphdb-feature-comparison.html
http://graphdb.ontotext.com/documentation/free/graphdb-feature-comparison.html
http://graphdb.ontotext.com/documentation/standard/sparql-compliance.html
http://graphdb.ontotext.com/documentation/standard/sparql-compliance.html
https://www.w3.org/TR/owl-ref/
http://graphdb.ontotext.com/documentation/standard/sparql-compliance.html
http://graphdb.ontotext.com/documentation/standard/sparql-compliance.html
https://mathworld.wolfram.com/TransitiveClosure.html
https://mathworld.wolfram.com/TransitiveClosure.html
https://www.w3.org/2009/sparql/wiki/Feature:PropertyPaths
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/wiki/SparqlImplementations
https://godoc.org/github.com/knakk/sparql
https://godoc.org/github.com/knakk/sparql
https://rdf4j.org/
http://graphdb.ontotext.com/documentation/free/using-graphdb-with-the-rdf4j-api.html
http://graphdb.ontotext.com/documentation/free/using-graphdb-with-the-rdf4j-api.html
http://graphdb.ontotext.com/documentation/free/using-graphdb-with-the-rdf4j-api.html
https://github.com/ansell/rdf4j-schema-generator
https://github.com/ansell/rdf4j-schema-generator

[34] ABOUT W3C. W3C. url: https : / / www . w3 . org / Consortium/ (visited on
05/10/2020).

[35] Randall Smith. Docker Orchestration. Packt Publishing Ltd, 2017.

[36] Andreas Schärtl. ULO RDF Collector. 2020. url: https://gitlab.cs.fau.de/
kissen/ulo-storage-collect (visited on 14/09/2020).

[37] Andreas Schärtl. Supervision Repository. 2020. url: https://gl.kwarc.info/
supervision/schaertl_andreas/-/tree/master/experimental/compose (vis-
ited on 14/09/2020).

[38] coq.8.9.0. MathHub. 2019. url: https://gl.mathhub.info/Coqxml/coq.8.9.0
(visited on 30/07/2020).

[39] The Definitive Glossary of Higher Mathematical Jargon. Math Vault. url: https:
//mathvault.ca/math-glossary/#elementary (visited on 07/07/2020).

[40] Matthew Inglis et al. “On mathematicians’ different standards when evaluating
elementary proofs.” In: Topics in cognitive science 5.2 (2013), pp. 270–282.

[41] Jeremy Avigad. “Number theory and elementary arithmetic.” In: Philosophia math-
ematica 11.3 (2003), pp. 257–284.

[42] Dorian Goldfeld. “The elementary proof of the prime number theorem: An histor-
ical perspective.” In: Number Theory. Springer, 2004, pp. 179–192.

[43] FN Maslahah, AM Abadi, et al. “Undergraduate students’ difficulties in proving
mathematics.” In: Journal of Physics: Conference Series. Vol. 1320. 1. IOP Pub-
lishing. 2019, p. 012072.

[44] Muhammet Doruk and Abdullah Kaplan. “Prospective Mathematics Teachers’ Dif-
ficulties in Doing Proofs and Causes of Their Struggle with Proofs.” In: Online
Submission 10.2 (2015), pp. 315–328.

[45] Matti Järvisalo et al. “Relating proof complexity measures and practical hardness
of SAT.” In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2012, pp. 316–331. url: https://www.cs.helsinki.
fi/u/mjarvisa/papers/jarvisalo-matsliah-nordstrom-zivny.cp12.pdf

(visited on 30/07/2020).

[46] Junkuo Cao, Weihua Wang, and Yuanzhong Shu. “Comparison of pagination al-
gorithms based-on large data sets.” In: International Symposium on Information
and Automation. Springer. 2010, pp. 384–389.

[47] Tom Wiesing, Michael Kohlhase, and Florian Rabe. “Virtual theories–a uniform
interface to mathematical knowledge bases.” In: International Conference on Math-
ematical Aspects of Computer and Information Sciences. Springer. 2017, pp. 243–
257. url: https://kwarc.info/people/frabe/Research/WKR_virtual_17.pdf
(visited on 09/07/2020).

[48] Paul Nijjar. “An attempt to automate np-hardness reductions via SO∃ logic.” MA
thesis. University of Waterloo, 2004.

27

https://www.w3.org/Consortium/
https://gitlab.cs.fau.de/kissen/ulo-storage-collect
https://gitlab.cs.fau.de/kissen/ulo-storage-collect
https://gl.kwarc.info/supervision/schaertl_andreas/-/tree/master/experimental/compose
https://gl.kwarc.info/supervision/schaertl_andreas/-/tree/master/experimental/compose
https://gl.mathhub.info/Coqxml/coq.8.9.0
https://mathvault.ca/math-glossary/#elementary
https://mathvault.ca/math-glossary/#elementary
https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-matsliah-nordstrom-zivny.cp12.pdf
https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-matsliah-nordstrom-zivny.cp12.pdf
https://kwarc.info/people/frabe/Research/WKR_virtual_17.pdf

[49] John Kunze and Thomas Baker. The Dublin core metadata element set. Tech. rep.
RFC 5013, August, 2007.

[50] DCMI Metadata expressed in RDF Schema Language. Dublin Core Metadata
Initiative. url: https : / / www . dublincore . org / schemas / rdfs/ (visited on
30/06/2020).

[51] Rosetta Code. url: https://www.rosettacode.org/wiki/Rosetta_Code (visited
on 30/09/2020).

[52] Iztok Fister Jr, Iztok Fister, and Matjaž Perc. “Toward the discovery of citation
cartels in citation networks.” In: Frontiers in Physics 4 (2016), p. 49.

[53] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Tech-
niques, And Tools: Second Edition. 2007.

28

https://www.dublincore.org/schemas/rdfs/
https://www.rosettacode.org/wiki/Rosetta_Code

	Introduction
	Implementation
	Components Implemented for ulo-storage
	Collector and Importer
	Endpoint
	Deployment and Availability
	Summary

	Applications
	Exploring Existing Data Sets
	Interactive Exploration
	Querying for Tetrapodal Search
	Summary

	Towards Manageable Ontologies
	The Challenge of Universality
	A Layered Knowledge Architecture

	Conclusion
	ULO Predicates Used in Coq and Isabelle Exports

