
Seminararbeit

Discrete Alternatives to the Sines

by

Andreas Schärtl

Matrikel-Nr.: —

Supervision:

Prof. Oliver Keszöcze

September 29, 2019

This document was produced with the typesetting system LATEX2e.

This seminar paper started as a work based on Donald Knuth’s The Art of Computer

Programming, in particular on a somewhat recent addition which deals with algorithms

and theorems related to “generating all n-tuples” [Knu01].

While originally, this paper was supposed to to start with a gradual introduction to n-

tuples and binary encodings, ultimately that proved to be too broad of a topic. Instead,

this work now focuses on one tidbit Knuth mentions in his discussion of n-tuples, namely

the theory of Rademacher and Walsh functions, which are similar to the well-known sines

and can be used in some of the same applications.

1

Contents

1 Introduction 3

1.1 Discrete Alternatives . 3

2 A Canonical Approach 5

2.1 Parameters . 7

2.2 Evaluating Rademacher Functions . 7

2.3 Orthogonality and Completeness . 8

2.3.1 Orthogonality . 9

2.3.2 Completeness . 10

3 Walsh Functions 11

3.1 Parameters and Properties . 11

3.2 Evaluating Walsh Functions . 13

3.3 Continuous Transform . 14

3.4 Discrete Walsh Transform . 18

3.4.1 Application in Compression . 18

4 Conclusion 21

A Proofs 22

A.1 Sign Changes of the Walsh Function . 22

A.2 Walsh-Rademacher Equality . 24

Bibliography 26

2

1 Introduction

In science and technology, often periodic processes can be formalized in terms of sine

waves

y(x) = A sin(ωx+ϕ), (1.1)

parameterized by amplitude A, frequency ω and phase ϕ [Pap09, pp. 163] with the fol-

lowing effects on function y(x) as visualized in Figure 1.1.

• Amplitude A stretches the wave in the vertical direction.

• Frequency ω on the other hand stretches the wave in the horizontal direction. As

such, ω controls the number of oscillations of y(x) in one period.

• Phase ϕ shifts the sine on the horizontal.

Not only can we control amplitude, frequency and shift of sine waves, with the tech-

nique known as Fourier transformation, we can also represent any periodic and con-

tinuous function as a sum of sine waves, the so called Fourier series [Sha95]. Fourier

transformation powers many systems taken for granted today, such as digital telecommu-

nication and media compression [Pap09, pp. 163].

1.1 Discrete Alternatives

The theory of sines and the Fourier transform are often part of an engineering or math

education. Less known is that there exist alternatives to the sines and the related Fourier

transforms. In particular, there exist discrete alternatives to the sines; instead of formu-

lating problems in terms of continuous waves, discrete pulses can be a viable alternative.

A potentially better fit for applications on digital computers.

This seminar paper looks at two discrete alternative to the sines, starting with the

simple Rademacher functions. While they do provide similar flexibility as the sines,

Rademacher functions are missing some not immediately apparent features intrinsic to

the trigonometric functions. This weakness is not shared by the Walsh functions. Despite

their digital nature, sums of Walsh functions can be used to approximate other functions

in the same way we approximate signals using the Fourier series.

3

1 Introduction

0
π

2 π
3π

2
2π

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

A = 1

2

A = 1

A = 2

(a) Asin(x) with A = 1
2
,2,3.

0
π

2 π
3π

2
2π

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ω = 1

ω = 2

(b) sin(ωx) with ω = 1,2.

0
π

2 π
3π

2
2π

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ϕ = 0

ϕ = π

2

(c) sin(x+ϕ) with ϕ = 0, π
2

.

Figure 1.1: Illustrating the three parameters of a sine wave, namely amplitude A, fre-

quency ω and phase ϕ .

4

2 A Canonical Approach

Tasked with finding a discrete alternatives for the sines, we might come up with some-

thing that looks like square waves ST ,

ST (x) =

{
1 0 ≤ x < T/2

−1 T/2 ≤ x < T
, (2.1)

defined on some interval [0,T). This definition fulfills our requirement for a digital func-

tion when values {−1,1} are encoded as binary zero and one. To be as close as possible

to the familiar trigonometric functions, we would set T = 2π for a square wave that looks

very much like the familiar sine (Figure 2.1.)

0
π

2 π
3π

2
2π

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

S2π(x)

sin(x)

Figure 2.1: S2π compared to the regular sine.

It should not come as a surprise

that such functions have been discov-

ered and studied before. Indeed, the set

of Rademacher functions originally de-

scribed by German mathematician Hans

Rademacher in 1922 [Rad22, pp. 130] is in

line with our intuition about discrete sines.

Definition. The Rademacher functions rk :

R→{−1,1} are defined defined as

rk(x) = (−1)⌊2kx⌋
(2.2)

with k ∈ N.

The Rademacher functions for k = 1 (identical to S1) as well as k = 2,3,4 are plotted

in Figure 2.2. Above definition of rk is based on Knuth’s formulation, rather than the one

original proposed by Rademacher himself as Knuth’s definition is closer to what a digital

computer might end up evaluating [Knu01, p. 8]. Another equivalent definition of the

Rademacher functions is

rk(x) = sgn
(

sin(2kπx)
)

(2.3)

when sgn(0) = 1 [Weib]. Equation 2.3 is useful because it illustrates the relationship

between Rademacher functions and their trigonometric cousins. However, it can only be

illustrative; discrete alternatives for the trigonometric functions must not involve evaluat-

ing the sine.

5

2 A Canonical Approach

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r1(x)

(a) k = 1

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r2(x)

(b) k = 2

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r3(x)

(c) k = 3

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r4(x)

(d) k = 4

Figure 2.2: Plotting Rademacher functions on [0,1).

6

2.1 Parameters

2.1 Parameters

Similar to how sines can be controlled with parameters A, ω and ϕ , it is easy to modify rk

with parameters to control amplitude a and phase p. Less obvious is that intrinsic to the

Rademacher functions is an equivalent to frequency, namely parameter k.

Let us investigate all these parameters in order. First of all, multiplying rk with ampli-

tude a changes the image of rk such that

rk,a(x) = a rk(x) ∈ {−a,a}. (2.4)

This is not really the same as amplitude A of the sines which changes the image to

A sin(x) ∈ [−A,A], (2.5)

because the sine is a surjective mapping. But for a discrete alternative, Equation 2.4 is as

far as we should go, maintaining the digital nature of the Rademacher functions. As for

the next parameter, introducing a shift p is equality trivial; merely adding p to argument x

moves rk on the horizontal, viz.

rk,p(x) = rk(x+ p). (2.6)

Intrinsic to each Rademacher function rk is parameter k which controls the number of

oscillations rk makes in the unit interval [0,1); function rk includes exactly 2k−1 oscilla-

tions on [0,1).

Proof. With each increment of k, exponent ξ (x) := ⌊2kx⌋ grows to twice its previous

size. In addition, flooring 2kx acts like a filter that discards everything right of the dec-

imal point. As a result, ξ (x) is a stairway function with its step width controlled by k.

With each increment of k, we get twice as many stairs of equal width. When evaluat-

ing rk(x), each time a new step is reached, the sign of rk(x) switches. This results in 2k−1

oscillations on [0,1).

With parameters a, p and k, the Rademacher functions could be an alternative to the

sines. For example, parameterized Rademacher functions are used to modulate messages

in digital communication [Moh77]. Their advantage compared to the sine is that they are

very easy to compute, as we will see now.

2.2 Evaluating Rademacher Functions

In practical applications of the Rademacher functions, it is necessary to evaluate rk(x) in

a reasonable amount of time. There are multiple ways to compute rk efficiently on digital

hardware, this section introduces two approaches.

Knuth notes that rk(x) can be computed quite elegantly if argument x is represented as

a fixed point number, that is as a binary string with a decimal point, viz.

x = (. . . c2 c1 c0 . c−1 c−2 . . .). (2.7)

7

2 A Canonical Approach

In that case we get

rk(x) = (−1)c−k =

{
1 c−k = 0

−1 c−k = 1
(2.8)

[Knu01, p. 8]

Proof. Multiplying x with 2k is equivalent to a shift to the left by k bits, even in this

decimal representation. We get

ρ(x) := 2kx = (. . .c−k . c−(k+1) . . .).

Taking the floor from ρ means cutting all digits right of the decimal point. As such,

exponent ⌊ρ⌋ is an even integer in case c−k = 0 and odd when c−k = 1, resulting in

Equation 2.8.

Fixed width numbers are used when more sophisticated floating point hardware is un-

available, for example on digital signal processors or embedded systems powered by

microcontrollers [Kne17, p. 177]. Knuth’s unorthodox approach to evaluating rk might

be a surprisingly good fit.

On a system that represents fractional values as some kind of floating point number,

like the one described by IEEE 754 [Kah96] [Kne17, pp. 101], evaluating rk is also fast.

Listing 2.1 illustrates this in C-like pseudo code, where function rademacher(k, x)

computes rk(x). On modern machines, all instructions required to execute rademacher

should run in constant time, which should be obvious for incrementing x’s exponent and

branching over p. Converting floating point x to integer p, effectively flooring x, can be

considered a constant time operation only if hardware support is available, for example

provided by the fistp instruction on the ubiquitous x84 64 architecture [Int19, Vol. 2A

3-355].

Regardless whether we are using low-powered embedded hardware with fixed point

numbers or more sophisticated computers with floating point units, evaluating rk is a

simple operation that should not be a bottleneck for any application.

2.3 Orthogonality and Completeness

As previously mentioned, the process known as Fourier transform allows us to approx-

imate functions on some interval to arbitrary accuracy. This is not possible with the

Rademacher functions. Details on such transformation are described in the following

section; for now we only wish to investigate why it is not feasible to use the Rademacher

functions for this task.

A deep-dive into the underlying theory is out of scope for this work, however we will

define two important concepts and try to gain an intuition on what they mean. What we

are looking for is a set of functions φk orthogonal and complete on some interval (a,b)
as sums of such functions φk can be used to approximate periodic functions to arbitrary

accuracy. Let us begin with the idea behind orthogonality.

8

2.3 Orthogonality and Completeness

float rademacher(int k, float x)

{

// Compute x = (2^k) * x. Because ‘x’ is represented as a floating

// point number, it is sufficient to increment its exponent by ‘k’.

x.exponent += k;

// We are only interested in what is left of the decimal point.

int p = (int) x;

// Equivalent to computing (-1)^p.

return (p % 2 == 0) ? 1 : -1;

}

Listing 2.1: Evaluating rk when x is represented as a floating point.

2.3.1 Orthogonality

Just like orthonormal vectors make a base for a vector space, orthogonal sets of functions

make a base for function spaces.

Definition. A set of functions φk is called orthogonal in interval (a,b) if

∫ b

a
λ φn(x) φm(x) dx =

{
λ n = m

0 n 6= m
(2.9)

(Lebesgue integral) and orthonormal when λ = 1 [Bea84, p. 4].

The Rademacher functions make up a set of orthonormal functions on interval (0,1).
Indeed, this is why they were interesting to Rademacher in the first place [Rad22]. Be-

cause the proof is quick and intuitive, it is included here.

Proof. If n = m, we get

∫ 1

0
rn(x) rm(x) dx =

∫ 1

0
r2

n(x) dx =
∫ 1

0
1 dx = 1. (2.10)

If on the other hand n 6= m, the product of two Rademacher functions rn and rm, n < m,

is negative just as often as it is positive. We need to realize two things.

• rk has equally many points x at which rk(x) = 1 as it has points at which rk(x)=−1.

• rk+1 has twice as many oscillations as rk. Each oscillation of rn is overlaid by

some 2p oscillations from rm.

The result is that rn(x)rm(x) is negative just as often as it is positive, in consequence

the integral is zero. The case for r1 and r2 is illustrated in Figure 2.3.

9

2 A Canonical Approach

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r1(x)

r2(x)

(a) Rademacher functions r1 and r2.

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

r1(x)r2(x)

(b) Product r1(x)r2(x). The integral over this

function is 0.

Figure 2.3: The integral over the product of two different Rademacher function is always

zero. As an example, here we look at r1 and r2.

2.3.2 Completeness

The second property we are after is completeness. If we wish to approximate functions f

with a series of functions φk to arbitrary accuracy, we should be able to sum up φk for k =
0,1,2, . . . in such a way that the error between f and series converges to zero.

Definition. A set of functions φk orthogonal in (a,b) is called complete in that interval

if for any piecewise continuous function f , coefficients cn can be picked such that they

minimize the mean-square error EN ,

EN =

∫ b

a

(

f (x)−
N

∑
n=1

cn φn(x)

)2

dx, (2.11)

(Lebesgue integral) that is EN → 0 as N →∞ [Weia] [Bea84, p. 4] [BS15, pp. 474].

While functions rk are orthogonal on the unit, they are not complete [Bea84, p. 8].

Here, the trigonometric functions are more more capable. The set of sines and cosines

is orthogonal and complete on (−π ,π), making the Fourier transform possible [Weia].

However, other complete sets of orthogonal functions exist, far beyond the traditional

sines. One such set, the one we will look at next, is the set of Walsh functions.

Summary

The Rademacher functions match our intuition about a discrete sine. Functions rk have

the same sign as their trigonometric counterparts and are easy to parameterize. Evaluat-

ing rk is fast, regardless whether the argument is represented as a fixed point or floating

point number. The downside is that the Rademacher functions are not complete and as

such sophisticated applications such as the Fourier transform are not possible with rk.

10

3 Walsh Functions

After investigating the rather simple Rademacher functions, we will now look at another

set of discrete waves, namely the family of Walsh functions originally described by math-

ematician Joseph Walsh in 1923 [Wal23].

Definition. The Walsh functions wk : R→{−1,1} are defined as

w0(x) = 1 and wk(x) = (−1)⌊2x⌋⌈k/2⌉
w⌊k/2⌋(2x). (3.1)

for k ∈ N.

To gain a feel for the Walsh functions, Figure 3.1 plots wk for k = 1 to k = 6 together

with similar sine waves. These plots graph wk on the unit and indeed many authors

define wk on [0,1) rather than R. This is not unlike how some authors define the sine on

(−π ,π) or similar. However, setting the domain of wk to R introduces no fundamental

problems or limitations and above definition reflects this.

3.1 Parameters and Properties

Similar to how we parameterized the Rademacher functions, we can also parameterize

the Walsh functions. Amplitude a stretches the function on the vertical while shift p

moves it on the horizontal, viz.

wk,a,p(x) = a wk(x+ p). (3.2)

An interesting property of the Walsh functions emerges related to shifts p. wk is cyclic

on the unit interval, that is

wk(x) = wk(x+1) = wk(x−1). (3.3)

Proof. Plugging in argument x+1, we get

wk(x+1) = (−1)⌊2x+2⌋⌈k/2⌉
w⌊k/2⌋(2x+2). (3.4)

We can drop +2 both in exponent and recursive argument as adding 2 to any number does

not change its parity.

wk(x+1) = (−1)⌊2x⌋⌈k/2⌉
w⌊k/2⌋(2x). (3.5)

With Equation 3.5 we arrive at the original formulation of the Walsh functions, proving

wk(x) = wk(x+1). Finally, with y := x−1, we get

wk(y) = wk(y+1) ⇒ wk(x−1) = wk(x). (3.6)

11

3 Walsh Functions

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w1(x)
√

2cos(1πx)

(a) k = 1

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w2(x)
√

2cos(2πx)

(b) k = 2

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w3(x)
√

2cos(3πx)

(c) k = 3

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w4(x)
√

2cos(4πx)

(d) k = 4

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w5(x)
√

2cos(5πx)

(e) k = 5

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w6(x)
√

2cos(6πx)

(f) k = 6

Figure 3.1: Comparing the Walsh Functions wk(x) for 1 ≤ k ≤ 6 to a similar sinus

wave
√

2cos(kπx).

12

3.2 Evaluating Walsh Functions

Defining amplitude and phase for the Walsh function is trivial and should be so for

most functions. What is more involved is understanding the equivalent to frequency ω of

the sines. Walsh functions wk fix the number of sign changes, that is wk makes exactly

k sign changes on [0,1). The plots in figure 3.1 illustrate this property quite well. They

also illustrate that unlike simple square waves, the distance between sign changes is not

guaranteed to be equal with each step. Because the proof of this property is rather long,

it was moved to Section A.1 of the appendix.

Probably inspired by similarities to the frequency of sines, parameter k is referred to

as sequency k by some authors [Knu01, p. 7]. Sequency k, together with amplitude a and

shift p, allow us to parameterize the Walsh functions much like we can parameterize the

sines.

3.2 Evaluating Walsh Functions

The recursive nature of wk might lead to concerns whether Walsh functions can be used

in practical applications where wk(x) needs to be evaluated quickly. This intuition is

unfounded; in a naive implementation, each recursive call halves parameter k, resulting

in runtime only logarithmic in k.

But Knuth notes that there also is another way. wk(x) can be evaluated as a product of

simpler Rademacher functions, viz.

wk(x) = ∏
i≥0

ri+1(x)
bi⊕bi+1, (3.7)

where k = (bn−1 . . .b1 b0) is the binary representation of k [Knu01, p. 8]. Again, the proof

of this equality is quite technical, as such it was moved into the appendix in Section A.2

as well. Trying out some examples, we get

w1(x) = r1(x) w2(x) = r1(x)r2(x) w3(x) = r2(x) (3.8)

and so on. Note in particular that the product in Equation 3.7 is always finite as k has

only a finite number of bits and as such for large i we get product terms

ri+1(x)
0⊕0 = (−1)0 = 1. (3.9)

If we use fixed point arithmetic as discussed in Section 2.2, computing rk(x) as prod-

ucts of Rademacher functions is particularly attractive. Say we have

rk(x) = r1(x) r2(x) · · ·rn(x), (3.10)

for some n, we then only need to look at bits

c−1, c−2, . . . c−n (3.11)

of argument x to compute the individual Rademacher functions.

13

3 Walsh Functions

Computing Walsh functions as products of Rademacher functions therefore has a run-

time only logarithmic in the number of bits in k which for sufficiently large k is better

than the naive recursive algorithm. Equation 3.7 is also useful in that it provides us with

ways to show some properties of wk. One such property is the identity

wk(x)wk′(x) = wk⊕k′(x), (3.12)

a handy theorem similar to the sines’ more complicated multiplication rule.

Proof. Say we write arguments k and k′ as binary strings

k = (. . .b2 b1 b0) and k′ = (. . .b′2 b′1 b′0), (3.13)

and k⊕ k′ as

k⊕ k′ =
(
. . .(b2 ⊕b′2) (b1 ⊕b′1) (b0 ⊕b′0)

)
= (. . .c2 c1 c0). (3.14)

We then get

wk(x)wk′(x) =

(

∏
i≥0

ri+1(x)
bi⊕bi+1

)(

∏
i≥0

ri+1(x)
b′i⊕b′i+1

)

(3.15)

= ∏
i≥0

ri+1(x)
(bi⊕bi+1)+(b′i⊕b′i+1) (3.16)

= ∏
i≥0

ri+1(x)
(bi⊕bi+1)⊕(b′i⊕b′i+1) (3.17)

= ∏
i≥0

ri+1(x)
(bi⊕b′i)⊕(bi+1⊕b′i+1) (3.18)

= wk⊕k′(x) (3.19)

Equality 3.17 is legal because r2
k(x) = 1 holds for all k and

(−1)a⊕b = (−1)a+b ∀ a,b ∈ {0,1}. (3.20)

This proof illustrates how an equality like Equation 3.7 can be useful both in practical

applications (when actually evaluating the function), as well as a way of discovering and

proving properties.

3.3 Continuous Transform

When describing Walsh functions, most authors begin with an introduction to orthogo-

nality and completeness and then discuss how to construct a series of Walsh functions

to approximate other functions. Knuth takes a different route in his work, immediately

jumping to how Walsh functions can be used to compute transforms of other functions.

We deviated from Knuth here and took the more traditional approach.

14

3.3 Continuous Transform

As already hinted at multiple times, the sequence of Walsh functions wk are a complete

and orthogonal set of functions on the unit [GES12, p. 4-5, pp. 56]. They can therefore

be used to approximate functions on an interval in terms of a Walsh series, an equally

capable alternative to the traditional Fourier series.

To compare Walsh and Fourier series with each other, we should start with a recap of

the Fourier series. A Fourier series f̂N approximates a function f with period T as a sum

of N sines and cosines,

f (x)≈ f̂N(x) =
a0

2
+

N

∑
k=1

ak cos(2πkx)+bk sin(2πkx), (3.21)

for some coefficients ak and bk chosen such that the series minimizes the mean-square

error (Equation 2.11) compared to the original function f . Computing ak and bk is what

is referred to as Fourier transform and can be achieved by evaluating the fixed forms

ak =
2

T

∫ T

0
f (x)cos(2πkx) dx and bk =

2

T

∫ T

0
f (x)sin(2πkx) dx (3.22)

which do require us to evaluate an integral [Bea84, p. 7, 17] [BS15, p. 474]. As an

example, in Figure 3.2 we approximate the polynomial

f (x) = (x−5) (x−3) x (3.23)

on (0,6) using a Fourier series with N summands. As expected, with increasing N, we

get increasingly better approximations. The same is true when using the Walsh functions

instead of sine and cosine. We can approximate functions f with period T in terms of a

Walsh series f̂N with N summands,

f (x)≈ f̂N(x) =
N

∑
k=0

ck wk(x), (3.24)

and weights

ck =
1

T

∫ T

0
f (x) wk(x) dx (3.25)

that minimize the mean-square error compared to f [Bea84, pp. 50]. To illustrate the

Walsh series, the same polynomial as before is approximated using a Walsh series in

Figure 3.3. Approximating digital signals, such as a simple square wave, is also possible

and is illustrated in Figures 3.4 and 3.5.

The obvious question that arises is when one should use a Fourier series and when

to prefer a Walsh series. Judging from the limited examples provided, we might argue

that the Fourier series converges more quickly, though the Walsh functions are easier

to evaluate, especially on primitive hardware. Unfortunately, a definite answer to this

question could not be found in the literature. For practical applications, it remains a

per-case decision which transform to use.

15

3 Walsh Functions

0 1 2 3 4 5 6

−5

0

5

10

15

f̂2(x)

f (x)

(a) N = 2

0 1 2 3 4 5 6

−5

0

5

10

15

f̂4(x)

f (x)

(b) N = 4

0 1 2 3 4 5 6

−5

0

5

10

15

f̂8(x)

f (x)

(c) N = 8

0 1 2 3 4 5 6

−5

0

5

10

15

f̂16(x)

f (x)

(d) N = 16

Figure 3.2: Approximating polynomial f (x) = (x−5) (x−3) x using a Fourier series f̂N

with N summands.

0 1 2 3 4 5 6

−5

0

5

10

15

f̂2(x)

f (x)

(a) N = 2

0 1 2 3 4 5 6

−5

0

5

10

15

f̂4(x)

f (x)

(b) N = 4

0 1 2 3 4 5 6

−5

0

5

10

15

f̂8(x)

f (x)

(c) N = 8

0 1 2 3 4 5 6

−5

0

5

10

15

f̂16(x)

f (x)

(d) N = 16

Figure 3.3: Approximating polynomial f (x) = (x− 5) (x − 3) x using Walsh series f̂N

with N summands.

16

3.3 Continuous Transform

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂4(x)

f (x)

(a) N = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂8(x)

f (x)

(b) N = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂16(x)

f (x)

(c) N = 16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂32(x)

f (x)

(d) N = 32

Figure 3.4: Approximating quare wave f (x) = (−1)⌊x⌋ using a Fourier series f̂N with

N summands.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f̂4(x)

f (x)

(a) N = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

f̂8(x)

f (x)

(b) N = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂16(x)

f (x)

(c) N = 16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.0

0.5

1.0

f̂32(x)

f (x)

(d) N = 32

Figure 3.5: Approximating quare wave f (x) = (−1)⌊x⌋ using Walsh series f̂N with

N summands.

17

3 Walsh Functions

3.4 Discrete Walsh Transform

Often in practical applications, we do not work with abstract functions f , but rather with

samples, that is measurements taken at fixed intervals. Looking at samples rather than

continuous functions, we can use the discrete Walsh transform, similar to the well known

discrete Fourier transform. This final section introduces a canonical application of the

discrete Walsh transform, compression of audio signals.

To get started, the the discrete Walsh transform Xn of a single sample xi out of a total

of N samples is given by

Xn =
1

N

N−1

∑
i=0

xi wn

(
i

N

)

. (3.26)

The inverse operation is

xi =
N−1

∑
n=0

Xn wn

(
i

N

)

. (3.27)

If we store all N transformed points Xn, we can reproduce all N samples xi to perfect

accuracy [Bea84, pp. 49]. An equivalent definition is given by Knuth who notes that the

discrete Walsh transform of 2n samples xi written in a vector

x = (x0, . . . , xn−1)
⊺ (3.28)

can be obtained by multiplying Wnx where Wn is a 2n ×2n-matrix with entries

wi

(
j

2n

)

(3.29)

in row i and column j with i, j ≥ 0 [Knu01, p. 8]. Formulating the Walsh transform as

a matrix operation can be quite helpful as highly optimized matrix libraries will perform

this operation efficiently.

3.4.1 Application in Compression

Now how can we use the discrete Walsh transform to compress audio signals? For one last

time, consider the polynomial f (x) = (x−5) (x−3) x, which we will think of as a sound

wave. We first sample f at N = 32 equally spaced points xi, illustrated in Figure 3.6a.

Applying the discrete Walsh transform, we gain N transformed points Xn. Plotting Xn in

Figure 3.6b, we are looking at the sequency domain of f . Each point Xn represents the

scale of the associated Walsh function wn. In our example, we see peaks for small n. For

larger n, Xn tends to be close to zero.

We can exploit this to our advantage and construct a simple compression algorithm for

the sound signal. First, apply the discrete Walsh transform to gain N points Xn. Then,

only store some M ≤N points. We can approximate the original signal f with just a small

amount of points Xn. Figures 3.6c to 3.6f illustrate this approach to signal compression

for various M.

18

3.4 Discrete Walsh Transform

0 1 2 3 4 5

−4

−2

0

2

4

6

8

f (x)

xi

(a) Sample points xi.

0 5 10 15 20 25 30

−1

0

1

2

3

4

Xn

(b) Transformed points Xn in the sequency do-

main.

0 1 2 3 4 5

−4

−2

0

2

4

6

8

f (x)

xi (restored)

(c) M = 4

0 1 2 3 4 5

−4

−2

0

2

4

6

8

f (x)

xi (restored)

(d) M = 8

0 1 2 3 4 5

−4

−2

0

2

4

6

8

f (x)

xi (restored)

(e) M = 16

0 1 2 3 4 5

−4

−2

0

2

4

6

8

f (x)

xi (restored)

(f) M = 32

Figure 3.6: Approximating polynomial f (x) = (x − 5)(x − 3)x with a discrete Walsh

transform. We take N samples and then restructure f with only the first M

transformations Xn.

19

3 Walsh Functions

Summary

Because the Rademacher functions are limited, we introduced the Walsh functions. They

can be parameterized like the sines and are reasonably fast to compute. What really makes

them useful is that the set of functions wk is orthogonal and complete in the unit. As such,

we are able to approximate periodic functions with sums of Walsh functions. Compared

to the Fourier transform, approximating smooth waves can take more Walsh summands

than Fourier summands, but Walsh functions should be easier to evaluate than the sine.

The discrete Walsh transform transforms a vector of samples and has applications in data

compression.

20

4 Conclusion

We started out trying to find a discrete alternative of the sine. Our first intuition lead to

the set of Rademacher functions, simple square waves which look similar to a regular

sine and easy to parametrize.

We also looked for alternatives to the traditional Fourier series. For a series of a set

of functions to approximate periodic functions to arbitrary accuracy, this set of functions

needs to be orthogonal and complete. The Rademacher functions are only orthogonal, but

not complete and as such could not be used. The Walsh functions however are complete

and orthogonal on the unit. Despite their awkward definition, we quickly convinced

ourselves of its sine-like properties and capabilities. In particular, we looked at the Walsh

series, an alternative to the Fourier series.

21

A Proofs

This appendix contains two technical proofs omitted in the previous sections. They are

based on work by Knuth [Knu01, p. 7-8, 28, 40-41].

A.1 Sign Changes of the Walsh Function

Theorem. Walsh functions wk,

w0(x) = 1 and wk(x) = (−1)⌊2x⌋⌈k/2⌉
w⌊k/2⌋(2x), (A.1)

make k sign changes on [0,1).

Proof. Proof by induction on k, we show this property once for even k and once for k that

are odd. Starting with even k, that is k = 2ℓ, we get

w2ℓ(x) = wℓ(2x) for 0 ≤ x <
1

2

because in this case

w2ℓ(x) = (−1)0⌈ℓ⌉

︸ ︷︷ ︸

=1

wℓ(2x).

On [0, 1
2
), w2ℓ already accumulates ℓ = k

2
sign changes as argument 2x of the recursive

call compresses wℓ onto half the space. Next, we have to look at the second half, viz.

w2ℓ(x) = (−1)1· 2ℓ
2 wℓ(2x) = (−1)ℓwℓ(2x) for

1

2
≤ x < 1 (A.2)

Again, a copy of wℓ is compressed into half the space. If ℓ is even, w2ℓ(
1
2
) = +1, the left

side is simply copied to the right and the right curve starts at +1 like normal. If ℓ is odd,

w2ℓ(
1
2
) = −1 and continues from there because the curve on the left is mirrored to right

by mirroring on the vertical axis. Either way results in k
2

sign changes on the right and in

consequence k sign changes on the unit when k is even.

Now we consider the case of odd k, that is k = 2ℓ+1. To prove the theorem for such k,

we will show that w2ℓ+1 makes ℓ sign changes before x = 1
2
, ℓ sign changes after x = 1

2

and exactly one sign change at x = 1
2
. Starting with the left side, we get

w2ℓ+1(x) = (−1)0
wℓ(2x) = wℓ(2x) for 0 ≤ x <

1

2

22

A.1 Sign Changes of the Walsh Function

which is identical to what we got for even k, yielding ℓ sign changes. Continuing the

argument, on the right side we get

w2ℓ+1(x) = (−1)1⌈ℓ+ 1
2⌉wℓ(2x) = (−1)ℓ+1

wℓ(2x) for
1

2
< x < 1.

If ℓ is even, ℓ+1 is odd and the curve on the right is flipped. If ℓ is odd, ℓ+1 is even and

the curves left and right are identical copies. Either way, we get ℓ sign changes on the

right. In total, we have already accumulated 2ℓ sign changes. Finally, we need to show

that for odd k, a sign change occurs at x = 1
2
. Plugging in x = 1

2
, we get

w2ℓ+1

(
1

2

)

= (−1)

⌊
2· 1

2

⌋⌈
2ℓ+1

2

⌉

w⌊ 2ℓ+1
2

⌋(1) = (−1)

⌈
ℓ+ 1

2

⌉

wℓ(1) = (−1)

⌈
ℓ+ 1

2

⌉

= (−1)ℓ+1

If ℓ is even, ℓ+1 is odd and

w2ℓ+1

(
1

2

)

=−1

which works out because w2ℓ+1 starts at +1 for x = 0, makes ℓ sign changes and as such

ends up at +1 again just before x = 1
2
. On the other hand, if ℓ is odd, ℓ+1 is even and

w2ℓ+1

(
1

2

)

=+1

which works out as above, except there are an odd number of sign changes on the left,

meaning that just before x = 1
2

the curve is at −1. We see that either way a sign change

has to occur at x = 1
2
. With this, we considered the full domain of w2ℓ+1 and count a total

of 2ℓ+1 sign changes.

23

A Proofs

A.2 Walsh-Rademacher Equality

Theorem. Walsh function rk(x) can be expressed as a product of Rademacher functions,

wk(x) = ∏
i≥0

ri+1(x)
bi⊕bi+1 , (A.3)

where k = (bn−1 . . .b1 b0) is the binary representation of k.

Proof. Proof by induction on k, split into two cases. Case 1 looks at arguments 0 ≤ x < 1
2
,

Case 2 looks at 1
2
≤ x < 1. Beginning with Case 1, 0 ≤ x < 1

2
, we arrive at

wk(x) = (−1)0
w⌊k/2⌋(2x) = w⌊k/2⌋(2x). (A.4)

Applying the hypothesis, we arrive at the desired

w⌊k/2⌋(2x) = r1(2x)b1+b2 r2(2x)b2+b3 · · ·= r1(x)
b0+b1

︸ ︷︷ ︸

=1

r2(x)
b1+b2

︸ ︷︷ ︸

=r1(2x)b1+b2

r3(x)
b2+b3

︸ ︷︷ ︸

r2(2x)b2+b3

· · · (A.5)

because in the specific case of 0 ≤ x < 1
2
,

r1(x) = (−1)⌊2x⌋ = 1 (A.6)

and in general

ri(2x) = (−1)⌊2i 2x⌋ = (−1)⌊2i+1 x⌋ = ri+1(x) (A.7)

as well as

(−1)a⊕b = (−1)a+b ∀ a,b ∈ {0,1}. (A.8)

With this we have shown that for arguments x on the left of 1
2
, the theorem holds. Now

we have to focus our attention on Case 2, 1
2
≤ x < 1. We get

wk(x) = (−1)⌈k/2⌉
w⌊k/2⌋(2x). (A.9)

For any x in Case 2, we can rewrite above first factor like this,

(−1)⌈k/2⌉ =
(
(−1)⌊2x⌋)b0+b1

= r1(x)
b0⊕b1, (A.10)

because if we look at the exponents fixed point representation
⌈

k

2

⌉

= ⌈. . .b3 b2 b1 . b0⌉ (A.11)

we see that if b0 = 0, b1 remains unchanged when rounding up and if b0 = 1, b1 gets

flipped. This is equivalent to b0⊕b1. Rewriting the first factor as discussed, we now look

at

wk(x) = r1(x)
b0+b1 w⌊k/2⌋(2x). (A.12)

24

A.2 Walsh-Rademacher Equality

Applying the hypothesis, we arrive at our goal

wk(x) = r1(x)
b0+b1

(
r1(2x−1)b1+b2 r2(2x−1)b2+b3 · · ·

)
(A.13)

= r1(x)
b0+b1 r2(x)

b1+b2 r3(x)
b2+b3 · · · (A.14)

as

ri(2x−1) = (−1)⌊2i(2x−1)⌋ = (−1)⌊2i+1x−2i⌋
(A.15)

where subtracting 2i has no influence on the parity of the exponent; ergo we can rewrite

(−1)⌊2i+1x−2i⌋ = (−1)⌊2i+1x⌋ = ri+1(x). (A.16)

25

Bibliography

[Bea84] Beauchamp. Applications of Walsh and Related Functions. Academic Press

London, 1984.

[BS15] Ilı́a Nikolaevich Bronshtein and Konstantin A Semendyayev. Handbook of

Mathematics. Springer Science+Business Media, 6th edition, 2015.

[GES12] Boris Golubov, Aleksandr Efimov, and Valentin Skvortsov. Walsh Series and

Transforms: Theory and Applications, volume 64. Springer Science & Busi-

ness Media, 2012.

[Int19] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual Com-

bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. 2019.

[Kah96] William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture

Notes on the Status of IEEE, 754(94720-1776):11, 1996.

[Kne17] Ronald T Kneusel. Numbers and Computers, volume 2. Springer, 2017.

[Knu01] Donald E Knuth. The Art of Computer Programming, volume 4, Pre-Fascicle

2a: A Draft of Section 7.2. 1.1: Generating all n-tuples, 2001.

[Moh77] Nirode Mohanty. Spread Spectrum and Time Division Multiple Access Satel-

lite Communications. IEEE Transactions on Communications, 25(8):810–815,

1977.

[Pap09] Lothar Papula. Mathematik für Ingeneure und Naturwissenschaftler Band 2.

Vieweg+Teubner, 2009.

[Rad22] Hans Rademacher. Einige Sätze über Reihen von allgemeinen Orthogonalfunk-

tionen. Mathematische Annalen, 87(1):112–138, 1922.

[Sha95] Hagit Shatkay. The Fourier Transform - A Primer. Brown University, 1995.

[Wal23] Joseph L Walsh. A closed set of normal orthogonal functions. American Jour-

nal of Mathematics, 45(1):5–24, 1923.

[Weia] Eric W. Weisstein. “Complete Orthogonal System.” From MathWorld–A Wol-

fram Web Resource. [Online; accessed 05-August-2019].

[Weib] Eric W. Weisstein. “Square Wave.” From MathWorld–A Wolfram Web Re-

source. [Online; accessed 07-August-2019].

26

	Introduction
	Discrete Alternatives

	A Canonical Approach
	Parameters
	Evaluating Rademacher Functions
	Orthogonality and Completeness
	Orthogonality
	Completeness

	Walsh Functions
	Parameters and Properties
	Evaluating Walsh Functions
	Continuous Transform
	Discrete Walsh Transform
	Application in Compression

	Conclusion
	Proofs
	Sign Changes of the Walsh Function
	Walsh-Rademacher Equality

	Bibliography

