
Design Challenges of Scalable Operating Systems for
Many-Core Architectures

Andreas Schärtl
Friedrich-Alexander-Universität Erlangen-Nürnberg

andreas.schaertl@fau.de

ABSTRACT
Computers will move from the multi-core reality of today to many-
core. Instead of only a few cores on a chip, thousands of cores
will be available for use. This change in architecture will force
engineers to rethink OS design, so that operating systems remain
scalable even as the number of cores increases. Presented in this
elaboration are three design challenges for operating systems on
many-core architectures: (1) Locks which do not scale, (2) poor
locality offered by the traditional approach of sharing processor
cores between application and OS and (3) no more cache coherent
shared memory available to the OS. This elaboration discusses why
these challenges impact scalability, introduces proposed solutions
and evaluates them.

1. INTRODUCTION
The 2015 International Technology Roadmap for Semiconduc-

tors 2.0 [1] gives an overview of the history of microprocessor de-
velopment. Manufacturers of microprocessors used to increase the
frequency of their processors with each new technology generation,
but at the beginning of the current century thermals limits were en-
countered which stalled the increase in processor frequencies. It
is no longer possible to increase both the number of transistors on
a die while also increasing clock speed, because trying to do both
would lead to serious problems related to heat dissipation. Chip
makers decided to keep Moore’s Law in effect and therefore still
produce chips with an ever increasing number of transistors while
frequencies do not see any more significant increase. The newly
gained transistors are used for more cores on a single die.

The move away from higher clock rates to more cores is what
changed the processor landscape from single-core to multi-core. As
the number of transistors on integrated circuits continues to grow,
it is reasonable to expect systems with hundreds, even thousands,
of general purpose cores in the future [7, 20].

If the number of transistors continues to grow as expected while
frequencies stay about the same, it will be up to the designers of
software to ensure that this new hardware is used efficiently. Sim-
ply waiting for higher clock rates that speed up performance is not
feasible anymore [18].

Looking at operating systems, it is essential that they scale with
this new hardware. They have to to manage the resources of the up-
coming many-core systems efficiently, otherwise it will be impos-
sible for an application on top of such an OS to take full advantage
of the newly available parallel processing power.

This elaboration is about scalability. As such, it is helpful to con-
sider a definition of scalability. Bondi provides such a definition,
focusing on two types of scalability: Load scalability and struc-
tural scalability [6]: Load scalability is the ability of a system to
continue effective operation while the workload increases. Systems

offering poor load scalability show degraded relative performance
when load increases. Structural scalability is a statement about fu-
ture developments. A system with good structural scalability will
be able to grow with the needs of tomorrow. On the other hand, a
system with poor structural scalability will require lots of effort to
keep up to date with current developments.

Wentzlaff et al. identified three challenges for system software
on many-cores hardware: (1) Locks on OS data structures that
hamper scalability, (2) poor locality that leads to ineffective use
of caches and (3) reliance on global cache coherent shared mem-
ory, something future multi-core architectures may not offer. Faced
with these challenges, they designed the fos operating system, an
OS designed to scale on many-core hardware [20].

This elaboration focuses on those three problems identified by
Wentzlaff et al. Section 2 discusses locks, caches and locality are
topic of section 3 and finally section 4 is about reliance on cache
coherent shared memory.

2. SCALABILITY ISSUES OF LOCKS
This section introduces the first challenge for operating systems

on many-cores: Locks impede OS scalability. As the number of
cores contending for a lock increases, more and more time is wasted
waiting for locks. Because traditional approaches to kernel devel-
opment will not offer enough scalability, avoiding locks should be
a core goal in the design of future operating systems.

One job of any OS is to distribute hardware resources to the ap-
plication processes and applications may need exclusive access to
one or more of these resources at a given time [19, p. 6–7]. Many
operating systems use locks to synchronize these different parties
with each other to avoid synchronization problems [20].

2.1 Locks may not Scale
Work on scalable operating systems has shown that there is rea-

son to believe that locks will not offer the desired scalability [8,
20].

Wentzlaff et al. motivate fos with a case study in which they
tested the performance of the page allocator in Linux 2.6.24.7. For
this case study, they used a machine with 16 Intel cores and a to-
tal of 16 GB RAM. Each core allocated one gigabyte and then
touched the first byte on every page of this gigabyte, ensuring that
the kernel actually maps the pages into physical memory. In each
run, they modified the number of active cores participating in the
benchmark. Differences in performance depending on core count
were made visible. In summary, the researchers noticed that as they
increased the number of active cores, lock contention became the
greatest cost factor. It was synchronization overhead that consumed
the most resources [20].

At first this benchmark may seem unrealistic, as all active cores

only request memory. Wentzlaff et al. are aware of this and argue
that while it is unrealistic for all cores on a machine to request
memory at the same time, it is fair to expect 16 cores out of an
available 1,000 to do so. Lock contention should be a big factor on
many-core systems if software design remains as it is today.

Comparable observations were also made in the development of
the Corey [8] operating system, where Boyd-Wickizer et al. ran a
similar benchmark on a machine with 16 cores. They measured the
time it takes to acquire a spin lock and then release it again in the
Linux 2.6.25 kernel. As the number of active cores increased, the
time for a single lock acquire/release increased in a linear fashion.
More active cores meant more lock contention.

These two examples show that using locks offers poor load scal-
ability. Increasing the number of active cores increases the con-
tention for locks. This results in a noticeable overhead, which only
grows as core counts increase. OS design indeed needs to consider
the challenge of lock overhead.

2.2 Short Term Remedies
Locks impede scalability. Operating systems designers used to

increase the granularity of locks to combat this. They long ago
stopped using a single global lock for global data structures, in-
stead today more fine grained locks are used. This allows for higher
levels of parallelism [20].

Increasing the granularity of locks as the number of cores rises
is not a long term solution. This is because splitting up already par-
allelized code very work intensive and also prone to errors. Simply
increasing the granularity of locks will not offer the desired struc-
tural scalability [20].

Another idea is increasing the performance of locks themselves.
In Non-scalable locks are dangerous [9], Boyd-Wickizer et al. re-
placed simple spin locks in the Linux kernel with more modern
MCS locks [14]. They observe that (1) the required changes are
straight-forward and (2) MCS locks offer the desired load scalabil-
ity in their benchmarks. These benchmarks use up to 28 cores.

But more sophisticated locks such as the MCS lock can only be
a short term remedy, not a long-term solution. Better performing
locks are not an improvement in structural scalability, rather they
are an aid that can postpone more fundamental changes in architec-
ture for later, as they do not solve the problem of lock contention
itself [9].

These two traditional approaches can offer some improvements.
But it remains unclear how to design an OS with locks that offers
both good structural and load scalability.

2.3 Avoiding Locks All Together
To avoid the problem of locks contention, the OS should avoid

locking as much as possible. This is the approach of fos [20] and
the Barrelfish operating system [4].

On fos, an OS designed for thousands of cores, every thread runs
on its own core. Wentzlaff et al. assume that cores will be so plen-
tiful that dedicating a core to just one thread is reasonable without
running into limitations posed by core count. Should that happen
regardless, the OS can fall back to traditional time sharing [20].

OS functionality, such as memory management or network com-
munication, is split into different servers. Each of those servers
offers a certain OS service and runs on a dedicated core. When
an application wants to use OS functionality (e.g. allocate mem-
ory), it sends a message to the corresponding server to request
the service [20]. The way servers offer OS functionality is similar
to how microkernels implement OS services through independent
processes [2, 12].

Inspired by distributed online services, servers are organized in

JOB 1 ◷

S A₀

A₁

malloc

JOB 0 ↺

malloc

①

②
③

④

Figure 1: Server S sequentializes concurrent requests for mem-
ory from applications A0 and A1. À First, application A0 sends
a request to server S. Á Because S is idle, it can start process-
ing the job right away. Â While S is still processing the first job,
application A1 also sends a request for memory. Ã S is still busy
with the first job, so the second job only gets enqueued, which
can be implemented using optimistic synchronization. The sec-
ond job will be processed once the first job is done.

fleets of cores offering the same functionality. One a system with
thousands of cores, there will be multiple server cores offering a
single system service, such as memory allocation or network com-
munication [21].

Now for how this results in less locks. Servers do not work in an
preemptive way, rather they process requests from applications in
a sequential manner. This is illustrated in Figure 1, where two ap-
plications A0 and A1 send a request for memory to a server core S.
Because servers sequentialize the concurrent requests from appli-
cations and only one server thread runs on a server core, there is
no need for hard synchronization on the core itself. With this ap-
proach, no locks are needed within a core, thus avoiding the scaling
pitfalls of locks [20].

Global data structures in the kernel remain. The available phys-
ical memory is finite, there needs to be some kind of synchroniza-
tion between servers in a fleet that does not rely on hardware locks.
Wentzlaff et al. propose some possible solutions: (1) Use a dedi-
cated lock server that offers notional locks, which can be used to
synchronize servers with each other. To acquire a lock, a server
sends a message to the lock server to request that lock, which is
identified by a unique name. The same applies for releasing that
lock. Because notional locks are not expected to perform well,
(2) algorithms found on distributed systems should be used instead.
With high rates of replication it will hopefully be possible to ser-
vice applications in a reasonable amount of time. As an alternative,
(3) using a dedicated transaction server is proposed. The individual
servers in the fleet would process the requests and then only send
the result to the transaction server [20].

When fos was first introduced, its implementation was still in an
early state. As such, it was not possible to evaluate the performance
of system services implemented as fleets. Evaluation was possible
only in 2011, when some basic servers were implemented, includ-
ing a network stack, a page allocation service and a read-only file
system. Comparing the performance of these services to a standard
Linux kernel showed comparable performance and better scalabil-
ity. For low core counts, fos suffered some overhead losses com-
pared to Linux (especially the file system implementation). But as
the number of cores increased, fos showed better load scalability
than Linux [21]. In summary, even though some new overhead is
introduced, this approach does seem promising.

Corey [8] takes a different approach to reducing the number of
required locks. Here, applications have to explicitly specify which
resources are shared. On today’s general purpose computers, it is
typical for a process to consist of multiple threads of execution. All
of these threads share an address space and can mutate state in that
address space. As such, kernel data structures, such as the page
table of a process, need to be synchronized. Often locks are used to
enforce these critical sections. But if only one thread accesses these
structures, using a global lock is not actually required. In Corey,
this does not happen: Per default, resources are not shared. Only
after issuing a system call indicating the desire to share, e.g. a page
of memory, will it be possible to do so. Only then will these re-
sources be protected by locks. As the system knows exactly which
resources are shared and which are not, these locks can be very fine
grained as supposed to a coarse global lock. This approach reduces
the number of required locks in the kernel.

One of the goals of Corey was to make sharing explicit, so that
no resources are wasted by assuming data to be shared that isn’t.
It is interesting that fos achieves this goal as well. Because fos
only relies on message passing, all sharing is explicit by design:
Sharing requires sending a message and all data that is shared has
to be embedded in a message [21].

In this section, locks were introduced as a threat to scalabil-
ity. Traditional approaches to OS development can only offer short
term solutions. In the long run, major architecture changes are re-
quired: These changes try to avoid locking as much as possible to
reduce the damage caused by lock contention.

3. USE OF CACHES AND LOCALITY
This next section is on the performance impact caused by oper-

ating system and application sharing of the same processors. Con-
text switches between OS and application are expensive and dis-
rupt caches. As a solution, this section will introduce dedicated
OS cores, which results in better locality and thus effective use of
caches.

On today’s multi-core machines, OS and applications typically
share the same cores with each other. Processor cores, however,
only have one set of caches, registers and only one translation looka-
side buffer (TLB). Exploiting both caches and TLB is crucial to
good performance. But with every context switch from application
to OS and vice versa, caches and TLBs lose effectiveness [16].

3.1 Damage Caused by Context Switches
Wentzlaff et al. conducted a case study to illustrate the dam-

age caused by OS/application sharing of cores. Using a modi-
fied version of the x86_64 emulator QEMU, it was possible to
measure cache miss rates and attribute them to either misses of
(1) operating system code, (2) application code or (3) operating
system/application interference. On this emulator equipped with
just one processor core, they ran Debian 4 and the Apache2 web
server, which received requests for a static web page.

The main take-away from this experiment was that the OS espe-
cially suffers from cache misses, more than the application does.
This applied to different types of caches and different cache sizes.
Cache misses related to operating system/application interference
were negligible [20].

Serving static web content is something many web servers do
with the very same software used in this experiment. It is likely
that these cache misses occur a lot on real-life multi-core systems
today.

Wentzlaff et al. finish their case study with a note that the pro-
duced findings match the results from a similar experiment made
in 1988 [3] by Agarwal et al. It should be noted that Agarwal also

contributed to the paper introducing fos. In the 1988 paper, OS
misses also made up a noticeable portion while OS/application in-
terference was negligible. However, the difference between OS and
application code was not as pronounced, rather OS and application
misses were about equal in percentage.

It is not clear how these cache misses are related to scalability. If
system calls are implemented with traps, it is likely that an increase
in load of system calls will pose an ever more damage to perfor-
mance as the processor is occupied with context switches [16]. If
this is an actual threat to load scalability is not known as no such
considerations were made for this case study [20].

3.2 Keeping Operating System and Applica-
tion Separated

Whether poor locality has impact on scalability or not, new many-
core computer architectures make it possible to envision systems
that require little context switching between OS and application,
as proposed in fos [20] and Barrelfish [4]. As free cores become
a commodity, a new approach is to keep OS and application code
separated.

The fos splits OS and application threads onto different cores.
Server processes, dedicated to a core, offer OS services, in fact
every thread runs on a dedicated core. While a scheduler before
had to manage the resource time, now the scheduler has to manage
space. Only when the number of threads exceeds the number of
cores will time sharing be needed [20].

No evaluation of separating OS and application was made by
Wentzlaff et al. until 2011. Then, the performance of single-core
sharing was compared to that of multi-core communication. These
tests used Linux, not fos, as the kernel. Among others, they tested
the performance of a web server, directory traversal and compiling
a C library project. The results were that for most use cases, sep-
arating OS and application on different cores does improve perfor-
mance, especially when OS and application run on the same chip,
so they can share L3 caches [5]. If these findings also apply to
more distributed systems like fos is not clear: Unlike Linux, they
do not rely on cache coherent shared memory as a communica-
tion medium. Cache coherent shared memory is something future
many-core systems may not offer (see section 4).

Dedicating cores to system functionality is something other op-
erating systems with scalability in mind have also done. Corey
allows applications to dedicate cores to kernel tasks, such as com-
municating with a network interface. Compared to a stock Linux
kernel, Corey was able to display improved network performance
in a synthetic benchmark [8].

The Barrelfish OS also uses dedicated cores, in a fashion like
fos. Baumann et al. argue that dedicated cores are a natural fit for
many-core architectures, especially because this allows the OS to
take advantage of message passing networks available on many-
core hardware [4].

In conclusion, sharing a core between OS and application is ex-
pensive. As the number of cores rises, enough are available so that
a subset of them can be dedicated to OS services alone. Such a sys-
tem is able to take full advantage of caches, which means efficient
use of the available hardware.

4. RELIANCE ON GLOBAL CACHE COHER-
ENT SHARED MEMORY

Now for the final challenge. Some researches believe that many-
core architectures will not offer cache coherent shared memory [20,
4, 11]. Instead, processes should use message passing for commu-
nication. Because cache coherent shared memory is a useful tool

that simplifies parallelizing certain kinds of applications, operating
systems should still offer it to applications, assuming the hardware
supports it.

Many contemporary computer systems offer cache coherent shared
memory. Operating systems running on such hardware can assume
that (1) there exists a single global address space and that (2) the
caches of individual cores can be kept in sync using cache coher-
ence protocols. These cache coherence mechanisms are employed
by hardware, so their implementation remains transparent to soft-
ware [17, p. 1–5].

4.1 Cache Coherent Shared Memory may not
be Available on Many-Core Systems

Cache coherent shared memory may not be available on many-
core systems. This is a trend observable in current embedded plat-
forms. There, a global cache coherent shared memory address
space is not available. Instead, cores are able to communicate using
message queues [15, 20].

Baumann et al. believe that global cache coherent shared mem-
ory will not be available in the future. They argue that while it has
been a useful feature before, now it is essential that future OS de-
signs are able to perform without cache coherent shared memory,
exactly because it is possible that these operating systems will have
to run on hardware without cache coherent shared memory [4].

But why is it that as the number of cores increases, it becomes
ever more expensive to implement cache coherence on hardware?
Choi et al. see three problems with scaling cache coherence to the
core counts of many-cores: (1) Overhead both related to power
consumption and latency, (2) a very complex implementation that
is prone to errors and (3) extra space overhead as lots of state needs
to be maintained [11]. These three points illustrate that it is hard to
scale cache coherence up to many cores, which implies that cache
coherence offers poor structural scalability.

It is not undisputed that cache coherence will disappear in the
future. Some argue that hardware-provided cache coherence is
way too useful to be abandoned and propose new mechanisms that
are supposed to keep cache coherence alive even as core count in-
creases [13].

4.2 Message Passing Instead of Cache Coher-
ent Shared Memory

Some assume that many-core architectures will not offer cache
coherent shared memory. However, Borkar explains that they do
offer on-die networks. These networks connect the different cores
with each other. Organized in ring or mesh topologies, they act
in a packet-switching manner [7]. Because cache coherent shared
memory may not be available but message networks will be, op-
erating systems designed for many-core systems focus on message
passing instead of shared memory for communication.

The fos does not require cache coherent shared memory for com-
munication between OS and application or within the kernel itself.
Instead, all such communication is done with message passing over
the on-die network. Message passing does introduce new latency,
but Wentzlaff et al. are hopeful that performance will be compara-
ble to cache coherent shared memory [20].

Baumann et al. make similar assumptions, and are able to back
up their claims by comparing performance of cache coherent shared
memory access with message passing. For these benchmarks, they
used an AMD machine with 4 CPUs and a total of 16 cores. First,
they had threads dedicated to a single core update the contents of
a small portion of memory. The cache coherence mechanism en-
sured that changes were visible to all cores. They noticed that as the
number of cores grew, performance worsened, exhibiting poor load

A₀ A₀ A₀

A₀ S A₁

A₀ A₀ A₁

S

A₁

A₁

A₁

A₂ A₂

A₂ A₂

S

S

Figure 2: An example of application-level cache coherent
shared memory. Each square represents a processor core. The
cores denoted S are running OS services, while the cores de-
noted Ai run an application thread with process identifier i. Ap-
plications A0 and A2 use cache coherent shared memory within
the application.

scalability. Comparing the performance between one core updating
the value and 16 cores, performance dropped by a factor of 40. Sec-
ond, they tested inter-core communication, which performed better.
Just sending a message showed no degradation caused by the num-
ber of cores at all. Where delays did occur is when considering
not just sending a message, but also processing it. Here, a linear
increase of time is observed, something Bauman et al. attribute to
queuing delays [4].

The idea behind message passing is not new. The Mach [2] mi-
crokernel used message passing for communication between ap-
plications and OS in 1986. Development on it lead to the believe
that communication through shared memory and communication
through explicit message passing are dual to each other [22]. The
L4 [12] microkernel did show that it is possible to implement fast
message passing based on only shared memory. However it is un-
likely that a system optimized to do one thing will excel doing the
other thing.

In summary, message passing is a viable alternative to cache
coherent shared memory. Application processes can use message
passing instead of other mechanisms, such as traps, to communi-
cate with the OS. Designing an OS like this increases structural
scalability, because no re-engineering is required as core count in-
creases [20].

4.3 Islands of Cache Coherent Shared Mem-
ory

OS designers are willing to sacrifice global cache coherent shared
memory for application-kernel communication and kernel data struc-
tures. But there seems to be consensus that applications should
have cache coherent memory available to them, as long as this is
supported by hardware [21].

As such, fos allows application-level cache coherent shared mem-
ory if the hardware supports it [20]. Figure 2 illustrates a possible
core layout on an OS in the vein of fos. Here, two applications
(denoted A0 and A2) take advantage of application-level cache co-
herent shared memory. The OS server cores denoted S do not use
cache coherent shared memory, they only communicate through
explicit message passing. Application A1 does not need cache co-
herent shared memory either. Depending on the specific needs of

an application, this feature can enabled or ignored.
This approach to user-level cache coherent shared memory em-

ployed by fos is reminiscent of the Hive [10] operating system from
1995. In Hive, cores are split up into individual cells. Within each
of those cells, the cores have cache coherent shared memory avail-
able to them. To communicate with other cells, network packets are
sent. The motivation for Hive, however, was to build a reliable OS.
Faults in hardware or software stay within a cell and do not affect
the whole system.

In summary, global cache coherent shared memory is likely to
disappear. Instead, message passing is an alternative that can be
used for communication. If offered by the hardware platform, cache
coherent shared memory should still be available to applications,
albeit on a smaller scope.

5. CONCLUSION
The trend for many-core systems will force OS designers to face

a number of new challenges and take advantage of changes in ar-
chitectures, if they want to build system software that remains scal-
able even as load and core count increases. First, locks should be
avoided because lock contention is a threat to scalability. While
there are some short term solutions (e.g. modern locks that per-
form better), a more long-term approach is to design the OS in a
way that avoids locks as much as possible. A proposed way to do
this is to split up OS services onto dedicated cores that process re-
quest for OS functionality in a sequential manner. Second, as cores
become a commodity, it becomes possible to split up application
and operating system, so that they do not need to share cores with
each other anymore. To do this, a core is dedicated to every thread
on the system. Because only one thread runs on one a core, no con-
text switching occurs and caches can be used to their fullest poten-
tial. Finally, cache coherent shared memory may not be available
on many-core systems. Scaling hardware-provided cache coher-
ence up to many-core systems is difficult and embedded many-core
hardware already ships without it. Instead of cache coherent shared
memory, message passing can be used for OS/application commu-
nication, the dual to shared memory. While the kernel may have to
forgo cache coherent shared memory, applications can still benefit
from it, as long as the hardware offers support for it.

6. REFERENCES
[1] The international technology roadmap for semiconductors

2.0 Executive Report. 2015.
[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. 1986.

[3] A. Agarwal, J. Hennessy, and M. Horowitz. Cache
performance of operating system and multiprogramming
workloads. ACM Trans. Comput. Syst., 6(4):393–431, Nov.
1988.

[4] R. I. Andrew Baumann, Paul Barham and T. Harris. The
multikernel: A new OS architecture for scalable multicore
systems. In 22nd Symposium on Operating Systems
Principles. Association for Computing Machinery, Inc.,
October 2009.

[5] A. Belay, D. Wentzlaff, and A. Agarwal. Vote the OS off
your core. 2011.

[6] A. B. Bondi. Characteristics of scalability and their impact
on performance. In Proceedings of the 2Nd International
Workshop on Software and Performance, WOSP ’00, pages
195–203, New York, NY, USA, 2000. ACM.

[7] S. Borkar. Thousand core chips: A technology perspective.
In Proceedings of the 44th Annual Design Automation
Conference, DAC ’07, pages 746–749, New York, NY, USA,
2007. ACM.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h.
Dai, et al. Corey: An operating system for many cores. In
OSDI, volume 8, pages 43–57, 2008.

[9] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich. Non-scalable locks are dangerous. In
Proceedings of the Linux Symposium, pages 119–130, 2012.

[10] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: Fault containment for shared-memory
multiprocessors. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95,
pages 12–25, New York, NY, USA, 1995. ACM.

[11] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,
N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter, and
C.-T. Chou. Denovo: Rethinking the memory hierarchy for
disciplined parallelism. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International
Conference on, pages 155–166. IEEE, 2011.

[12] J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 237–250, New York, NY, USA,
1995. ACM.

[13] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM,
55(7):78–89, July 2012.

[14] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst., 9(1):21–65, Feb. 1991.

[15] J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick,
K. Keutzer, and T. Mattson. The MANYCORE revolution:
will HPC lead or follow. SciDAC Review, 14:40–49, 2009.

[16] L. Soares and M. Stumm. FlexSC: flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, pages 33–46. USENIX Association,
2010.

[17] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on
memory consistency and cache coherence. Synthesis
Lectures on Computer Architecture, 6(3):1–212, 2011.

[18] H. Sutter. The free lunch is over. Dr. Dobb’s Journal, 30(3),
Feb. 2005.

[19] A. S. Tanenbaum and H. Bos. Modern operating systems.
Pearson Prentice Hall, 3rd international edition, 2009.

[20] D. Wentzlaff and A. Agarwal. Factored operating systems
(Fos): The case for a scalable operating system for
multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85, Apr.
2009.

[21] D. Wentzlaff, C. Gruenwald III, N. Beckmann, A. Belay,
H. Kasture, K. Modzelewski, L. Youseff, J. E. Miller, and
A. Agarwal. Fleets: Scalable services in a factored operating
system. 2011.

[22] M. Young, A. Tevanian, R. Rashid, D. Golub, and
J. Eppinger. The duality of memory and communication in
the implementation of a multiprocessor operating system.
SIGOPS Oper. Syst. Rev., 21(5):63–76, Nov. 1987.

