
Lehrstuhl für Informatik 3
Rechnerarchitektur

Andreas Schärtl

Design and Implementation of an Editor for
Creating and Simulating Heterogeneous
Systems

Bachelorarbeit im Fach Informatik

16. Januar 2019

Please cite as:
Andreas Schärtl, “Design and Implementation of an Editor for Creating and Simulating Heterogeneous Systems,”
Bachelor’s Thesis (Bachelorarbeit), University of Erlangen, Dept. of Computer Science, January 2019.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Rechnerarchitektur

Martensstr. 3 · 91058 Erlangen · Germany

www3.cs.fau.de

http://www3.cs.fau.de/

Design and Implementation of an Editor for
Creating and Simulating Heterogeneous

Systems

Bachelorarbeit im Fach Informatik

vorgelegt von

Andreas Schärtl

geb. am 01. Mai 1992
in Nabburg

angefertigt am

Lehrstuhl für Informatik 3
Rechnerarchitektur

Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Sebastian Rachuj
Dr.-Ing. Marc Reichenbach

Betreuender Hochschullehrer: Prof. Dr.-Ing. Dietmar Fey

Beginn der Arbeit: 19. Juli 2018
Abgabe der Arbeit: 16. Januar 2019

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als

solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance

from third parties.

I certify that the work has not been submitted in the same or any similar form for

assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Andreas Schärtl)

Erlangen, 16. Januar 2019

Zusammenfassung

Beim Design von heterogenen Systems-On-A-Chip (SoC) kommen unterschiedliche

CPU- und GPU-Simulatoren zum Einsatz. Anwendungen finden sich in den ver-

schiedensten Gebieten, unter Anderem bei mobilen Endgeräten, Fahrzeugen oder

IoT-Anwendungen. Zur Entwicklung und Evaluation von SoCs soll in dieser Arbeit ein

Framework, Kras, entwickelt werden, welches existierende Simulatoren vereinigt.

Kras basiert auf SystemC, einer Erweiterung der Programmiersprache C++,

entwickelt für funktionale Simulation von Hardwarekomponenten. Simulationen

werden durch INI-Dateien beschreiben und zu SystemC übersetzt. Um dann die

Simulation laufen zu lassen, wir dieser SystemC-Code ausgeführt. Diese Arbeit zeigt,

dass es möglich ist, verschiedene Simulationssoftware mit SystemC zu kombinieren.

Der Preis hierfür sind Simulationen, die bis zu drei Größenordnungen langsamer in

der Ausführung sein können.

iii

Abstract

During work on heterogeneous systems on a chip (SoC) designs, different CPU and

GPU simulators are used. Applications for such systems are found in many areas,

including mobile phones, the automotive sector and IoT solutions. This thesis wants

to develop a framework for design and evaluation of SoCs, Kras, that combines

different existing simulators into one package.

Kras is built around the SystemC environment, an extension to the C++ program-

ming language for functional simulation of hardware components. Simulations are

configured in INI files which are compiled to SystemC code. Running this SystemC

code means running the simulation. This thesis shows that it is possible to combine

existing simulator software using SystemC and a unified description language. The

disadvantage of this approach are slowdowns during simulation that can be as big

as three orders of magnitude.

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem . 2

1.3 Current Approaches . 3

1.3.1 Virtual Platforms . 3

1.3.2 Standardization Between Tools 4

1.3.3 Schematic Views . 5

1.4 Goals . 5

2 Fundamentals 7

2.1 Simulation in Computer Architecture Design 7

2.1.1 Register Transfer Level . 8

2.1.2 Transaction Level Modeling . 8

2.2 SystemC . 9

2.2.1 Primitives of SystemC TLM . 10

2.2.2 Simulation . 11

2.2.3 Use in this Thesis . 11

2.3 Available Components . 12

2.3.1 gem5 . 12

2.3.2 OVPsim . 13

2.3.3 GPGPU-Sim . 14

3 Method 15

3.1 Primitives of Configurations . 15

3.1.1 Primitives Inherited From SystemC 15

3.1.2 Bus Configurations as an Additional Primitive 16

3.2 Configuration Format . 17

3.2.1 SystemC . 17

3.2.2 Intermediate Languages . 18

3.2.3 Domain Specific Language . 19

vii

Contents viii

3.2.4 INI . 20

3.3 From Configuration to Running Simulation 20

3.3.1 Dynamic Setup . 21

3.3.2 Code Generation . 22

3.4 Implementation as a Shared Library . 23

4 Implementation 25

4.1 Core Library . 25

4.1.1 Object Oriented Configuration 26

4.1.2 Type Information . 28

4.1.3 Parsing INI files . 30

4.1.4 Translation to SystemC . 30

4.2 Command Line Interface . 32

4.3 Graphical User Interface . 32

4.4 Porting SystemC Modules to Kras . 34

4.4.1 gem5 . 34

4.4.2 OVPsim . 35

4.4.3 GPGPU-Sim . 36

5 Evaluation 39

5.1 Cost of SystemC Coupling . 39

5.1.1 Test Setup . 39

5.1.2 Results . 40

5.1.3 Origin of Overhead . 42

5.1.3.1 Overhead for gem5 Configurations 42

5.1.3.2 Overhead for OVPsim Configurations 43

5.1.4 Differences Depending on Workload 43

5.1.5 Consequences . 44

5.2 Goals . 44

5.2.1 Extensibility . 45

5.2.2 Abstract Configurations . 45

5.2.3 Cooperability . 46

6 Conclusion 47

Bibliography 53

Chapter 1

Introduction

Today, systems on a chip are common in many applications and focus of much

research. Simulations are used in many stages of development of these systems. As

such, it comes at no surprise that a lot of simulation software is now available, all

with individual properties and strengths. On the downside, it often can be hard to

combine these simulators, requiring duplicate work to use the distinct advantages

of different simulation packages.

This thesis tries to find a way to design a flexible framework for configuring

simulations that work across different simulators. The framework should include

support for a graphical editor that allows users to edit simulation setups in an

interactive fashion.

1.1 Context

Systems on a Chip (SoC) are a class of integrated circuits that combine one or more

general purpose processing (CPU) cores with other components on one die. Previ-

ously, these components would have been implemented as distinct integrated circuits

on a circuit board. Today, they are all integrated in one chip. Such components

include bus systems, memory, graphic processors (GPUs) and digital signal proces-

sors [1]. Integrating all these components into one chip has advantages: For one,

(1) SoCs save space compared to multiple distinct circuits. This is necessary for

mobile and internet of things (IoT) applications where space can be constrained.

SoCs can also be (2) cheaper to produce compared to using distinct chips: Instead

of fabricating different distinct chips and then wiring these chips together, a SoC can

be manufactured as a single unit. [1, 2].
SoCs make it easy to combine components (e.g. CPU, memory) on one die.

This is because different components do not get implemented from scratch, rather

designer use pre-made components (intellectual property blocks, IP blocks) provided

1

1. Introduction 2

by various hardware and software vendors. Combining these IP blocks results in a

digital design that can then be manufactured by a semiconductor lab. This relative

ease of development means that SoCs can be fine-tuned for many applications [3,

4].
A next step towards more flexible systems are so-called heterogeneous systems,

which extend the idea of the SoC. A heterogeneous system can include multiple CPUs

with different properties or architectures dedicated to specific tasks. For example, a

notebook computer might contain two kinds of CPUs: A high-performance, high-

consumption, CPU on one hand and a low-power, low-consumption, CPU on the

other hand. While plugged into wall power, the high-performance CPU provides

quick computation, while on battery the low-power CPU improves battery life. Both

CPUs reside on the same chip, manufactured as a single unit, keeping production

cost low [5]. This illustrates how heterogeneous systems can offer more flexibility

compared to traditional systems.

The only way to evaluate SoC designs in a reasonable amount of time and at

a justifiable cost is to use simulations. Simulations are based around models of

the components that make the design as well as the interconnects between them.

Simulations provide detailed information about functionality and timing properties.

This information is important to avoid design mistakes early in development [6].
For this purpose, a broad range of simulation tools has emerged.

1.2 Problem

Different simulation software exhibits different properties. Differences are, among

others, in feature set, accuracy and simulation speed. All these different properties

are worth considering during design. Ideally, an SoC designer uses the most accurate

simulator to gather timing information and the quickest simulator to do functional

testing.

Unfortunately, using different simulators for the same project can be cumbersome

and prone to error. For one, (1) configurations are incompatible with each other.

A configuration built for one simulator will not run on another simulator without

change. In consequence, the layout of the SoC design needs to be re-created many

times, just so the semantically identical model is understood by a different simulator.

During development, inevitable changes to the layout need to be replicated as

well, once for every simulation package. Another problem is that (2) models of

components might be incompatible between simulators. A component such as a bus

connect or RAM will have to be re-created once for every simulation package. Both

(1) and (2) stand in stark contrast to the “don’t repeat yourself” (DRY) principle [7, p.

1. Introduction 3

27] which adds uncertainty to the design process: Provided multiple configurations

for the same SoC, do these configurations model the same chip?

This thesis wants to develop and evaluate an approach for unified system sim-

ulation. For this, this thesis introduces the Kras framework. Kras can configure

different CPU and GPU simulators as well as peripheral components based on a

unified configuration file. The framework comes together with a graphical front-

end, such that even big designs with multiple connections and components can be

configured without losing track of the general setup.

1.3 Current Approaches

The problem of a diverse set of simulation software is not a new one. Existing

modeling software packages try to ensure some degree of cooperability with other

tools and maintain a reasonable level of complexity such that the user does not get

overwhelmed.

1.3.1 Virtual Platforms

One category of simulation software is the “virtual platform” [8]. A virtual platform

provides the user with a set of hardware models (e.g. processors, memory, bus

systems and IO peripherals) combined in one integrated editor. These components

can typically be configured using a graphical design tool [8]. Ideally, users can

complete the whole design within a given virtual platform, with all necessary tools

in one place.

One example of such a software is Platform Architect [9], a commercial prod-

uct distributed by Synopsis. The main interface consist of a graphical editor that

lets users place components into the simulation, configure interconnects between

these components, including memory and bus configurations. Platform Architect is

based around SystemC, a publicly available extension of the C++ programming lan-

guage [10]. This means that other components implemented in SystemC, including

full CPU cores, can be integrated into a Platform Architect workflow.

Vista from Mentor Graphics is a tool similar to Platform Architect [11, p. 5].
It provides capabilities for testing abstract models of SoC designs. Just like Plat-

form Architect is based on the SystemC language; included models of processors

and peripherals can be extended with third party components. Configuration of a

simulation is handled in a schematic view for which corresponding SystemC code is

compiled and executed for simulation. These simulation binaries can be executed

either (1) directly through the graphical interface or (2) automated in scripts [12].
Virtual platforms can be a convenient environment for SoC simulation. Being built

around an established language, such as SystemC, means that Platform Architect and

1. Introduction 4

Vista can be used in conjunction with third party models. A possible disadvantage of

virtual platforms is that running everything through one big tool creates a dependency

on a tool vendor: While it might be possible to integrate custom designs for the

virtual platform, it might not be possible to integrate the vendors’ models into other

tools. One big all-combining tool might also not cooperate as well in automated

setups and continuous integration. It is true that integrated virtual platforms can be

very productive and appropriate for many designs. However, lack of flexibility and

dependency on a single product, potentially very expensive, can be a problem.

1.3.2 Standardization Between Tools

Effort has been made to design a format for describing the properties of hardware

models in a universal manner. The outcome of this effort is IP-XACT, an IEEE stan-

dard [13]. It aims to provide a standardized way of describing hardware models

using XML. The standard contains schema for defining the interface of hardware

components (e.g. ports, available registers), as well as the interconnects and bus

configurations of a single component or system. These standardized components can

then be integrated into full setups. The idea is that IP-XACT descriptions represent a

platform-agnostic representation of a simulation setup. However, IP-XACT is mostly

concerned with metadata, that is the interface of models, but not their functional

behavior [8, 14]. Functional behavior has to be implemented by the tool running the

simulation. Porting a model to another simulator would still mean re-implementing

the models behavior.

A language that describes interface as well as functionality of hardware compo-

nents is SystemC [10]. SystemC is not a stand-alone language, rather it is a library

for the C++ programming language designed for functional modeling of different

systems. SystemC code is compiled using a regular C++ compiler and linked against

the SystemC library. This results in a binary that runs a simulation of the configured

system. This is illustrated in Figure 1.1. As desired by the developer, this simulation

model.cc a.out
simulation output

g++ execution

Figure 1.1 – How SystemC runs simulations. Individual models are combined
in a top level file model.cc which is compiled using a regular C++ compiler.
The resulting executable is run as a normal program and outputs logging
information as configured.

1. Introduction 5

binary prints functional or timing analysis to the console or writes it to log files. The

SystemC standard comes together with an Apache-licensed reference implementa-

tion [15] and has been adopted by various design tools (Synopsis Platform Architect,

Mentor Graphics Vista). This means that models encoded in SystemC will be able to

run on various simulation software targets.

1.3.3 Schematic Views

One similarly between many chip design tools is the use of a schematic user interface

that lets users change the configuration of a simulation by dropping components

into a canvas and then connecting these components which each other. For example,

both Synopsis Platform Architect and Mentor Graphics Vista offer such interfaces,

as well as MathWorks’ HDL Verifier [16] hardware test benching tool or the ARM

SoC Designer [17], a tool for prototyping SoCs based around ARM processors.

1.4 Goals

Motivated by the problem statement and based on previous work, three goals were

made out for the simulation framework designed in this thesis:

• There are many simulation packages available to a designer. To avoid code du-

plication and conform to the DRY-principle, it needs to be possible to integrate

Kras with many different simulation tool chains. The framework needs to be

extensible. It should be able to support various models of CPUs and peripherals.

• While different simulators from different vendors do have different properties,

their core interface should be the same. The framework should work with

abstract descriptions of simulation layouts. Implementation details should be

transparent to the user when possible, such that the SoC architecture can be

the focus.

• Kras combines different tools that speak different languages and controls all

these tools using a single interface. This is necessary because simulation

software vendors designed products not necessarily compatible to each other.

As a layer built on top of this software, Kras should not commit the same

mistake. Instead, it should be a loosely coupled [18, p. 30] component of a

simulation tool chain that cooperates with other tools and, if necessary, could

be easily replaced. Kras should be easy to incorporate the tool into other

workflows. The framework should offer cooperability.

Using different simulation software offers advantages, but can be cumbersome.

The goal of this thesis is to develop and evaluate Kras, a framework which (1) simu-

1. Introduction 6

lators can easily be adapted to (extensibility), (2) allows the designer to focus on

the design and not simulation details (is abstract) and (3) is not difficult to use with

other tools and individual workflows (cooperability).

Chapter 2

Fundamentals

This chapter presents the fundamental building blocks that make up the base of Kras.

First, section 2.1 introduces the different abstraction levels of SoC simulation The

abstract transaction level modeling (TLM) proves to be the right level of simulation

for this project. A popular implementation of TLM is found in the SystemC language,

introduced in section 2.2. Finally, section 2.3 presents a selection of simulation

packages. Combining these simulators using the SystemC language will be the main

task of Kras. These are the fundamentals this thesis is built upon.

2.1 Simulation in Computer Architecture Design

Before starting the actual discussion, it is helpful to make some definitions. Based

on previous work found in literature [19, p. 6ff], these definitions help to make this

thesis more clear. A model is a representation of a real object (e.g. a CPU core, a bus

system, an IO device). The model encapsulates the distinct properties of the original

object (e.g. functional behavior, timing information) in the form of a mathematical

representation or program code. A configuration shall describe the (1) setup of

models representing real components and (2) the interconnects between those

components. Finally, a simulation executes a configuration. The simulation takes the

modeled components together with their interconnects, supplies the components

with input and records the responses of the components to the simulated stimuli. To

Simulations are an integral part to SoC design and evaluation. For the sys-

tem designer, multiple categories of simulations are available. These categories

differ in level of abstraction and available primitives. This thesis differentiates

between two categories, register transfer level (RTL) models and transaction level

modeling (TLM) [20]. Development typically starts at a very abstract level (TLM) and

eventually progresses to a point where individual logic gates are placed (RTL) [21].

7

2. Fundamentals 8

The remainder of this section will introduce both RTL and TLM in more detail and

explain why TLM is the right level of abstraction for Kras.

2.1.1 Register Transfer Level

Models at the register transfer level (RTL) are based on two main building blocks,

(1) memory (registers) and (2) logic (transfer between registers) [22] as exemplified

in figure 2.1a. These primitive building blocks result in a very low level of abstraction

close to real silicon circuits.

Development of custom silicon requires RTL modeling during design [21]. How-

ever, in the design of SoCs or heterogeneous systems, RTL modeling generally only

plays a role during the end of development. Before RTL simulation, a lot of time

is spent with more abstract design exploration. The core building blocks here are

CPU cores, signal processors and bus systems, not registers and logic gates. While it

is possible to represent these abstract components as RTL models, this is not a good

solution.

For one, RTL models are (1) too detailed during design exploration. They do

not offer the level of productivity required in today’s competitive market and delay

projects with unnecessary detail [23]. RTL models are too complex, they don’t allow

quick iteration because designers get overwhelmed by the fine detail. It is not only

the designer that is overwhelmed by this level of complexity, (2) the high level of

detail also results in very demanding computer simulations that take up a lot of time

to run. While it is possible to boot a Linux kernel in an RTL simulation of a processor,

this simulation might take more than ten hours [24]. In the end this again means

unacceptable waiting periods in SoC design.

The high level of detail found in RTL models results in unacceptable mental load

and long-winded computer simulation. They are not a viable choice for abstract

SoC design. As such, RTL level modeling is too detailed for the intents of Kras, a

framework that wants to take a more abstract perspective.

2.1.2 Transaction Level Modeling

RTL models are too fine grained because of insurmountable detail. On the other

hand, transaction level modeling (TLM) offers a more abstract point of view on a

system. Instead of thinking of systems in terms of register memory and logic gates,

TLM models are made up of abstract components that represent real functionality on

a chip. 2.1b illustrates this with a basic TLM schematic. Set up in a configuration, this

creates an abstract model of a system that can be simulated to gain approximations

of performance and functionality [20].
TLM simulations do not simulate voltage levels on individual wires, rather they

express the idea of communication in a complex system. During simulation, the

2. Fundamentals 9

D Q

CLK

RegisterTransfer Logic

(a) RTL schematic (b) TLM schematic

Figure 2.1 – Differences in schematics depending on abstraction level.
RTL schematics consists of registers and transfer logic while the building blocks
in TLM schematics are abstract components. A line in the RTL schematic rep-
resents a wire on the circuit while a line in a TLM schematic represents a path
for messages.

individual components of a TLM model exchange messages, which is sufficient for

functional simulation [23]. In an RTL model, individual lanes of the bus would have

been modeled, not in the case of TLM.

This abstract way of thinking about systems has multiple consequences for

TLM simulations. Naturally, the high level of abstraction results in inaccuracies

regarding timing and potentially functional properties. However, for design explo-

ration and development, such approximations often are sufficient [23]. On the other

hand, TLM simulations come with advantages that make them attractive for use in

SoC design, effectively negating the disadvantages of RTL. For one, (1) the high

level of abstraction results in easier to understand configurations. A more simple

configuration results in simulations less prone to error and higher productivity. The

reduced complexity makes it easier to cope with the complexity of a modern SoC [25,

p. 472ff]. The level of complexity has an effect on execution time as well. Because

they do not have to model individual wires and voltage levels, (2) TLM simulations

can achieve higher throughput compared to RTL simulations. This allows for quick

iteration and change [24].
TLM offers just the right level of abstraction for Kras. For this reason, the work

in this thesis only concerns itself with TLM simulation.

2.2 SystemC

TLM models can be implemented in general purpose programming languages, such

as Java [26], but there already exist programming environments designed for use

with TLM. A language that has good support for modeling TLM simulations is the

2. Fundamentals 10

freely available SystemC language, standardized by the IEEE [10]. While SystemC

does support simulation of RTL models, it also supports transaction level modeling

in the form of the SystemC TLM-2.0 standard. This TLM extension is integrated into

SystemC and now part of the regular SystemC release [10, 15].

2.2.1 Primitives of SystemC TLM

A TLM configuration consists of instances of models, each with a well-defined inter-

face, and the interconnects between those instances. This subsection investigates

how these primitives are implemented in SystemC TLM.

Models of hardware components are represented by SystemC modules [10].
For example, the code in Listing 2.1 declares a SystemC module named Printer.

SystemC modules are regular C++ classes. As such, modules can contain member

variables and methods. In this example, the module has one member variable in

and a method callback. In the implementation of the constructor, not listed, the

socket in is configured to call the method callback on events.

SystemC TLM modules define the interface of a component in the form of sockets

which can be understood as interconnection points (ports) of a component. Sys-

temC TLM differentiates between two kinds of sockets: On one hand, initiator sockets

are sockets that can start communication while on the other hand, target sockets may

only reply to messages sent from initiator sockets. Master components use initiator

sockets to send requests to target sockets of slaves [10, p. 413ff].
To place a component into a configuration, an object of the corresponding mod-

ule (class) is created as usual in C++. As such, creating an object means invoking

the constructor of that class. This might require some constructor arguments. In

particular, SystemC modules will usually have at least one mandatory constructor

parameter (the name of the component; used for logging) [10, p. 57ff], but in gen-

eral SystemC modules can have any number of constructor parameters. Additionally

to constructor parameters, template parameters might be required to instantiate an

object. Indeed this is often the case for modules part of the SystemC TLM library.

Modules encapsulate the individual properties of a component and define their

interface using sockets. What is left is the interconnect between instances. In a

1 SC_MODULE (Printer) {
2 simple_target_socket <Printer , 32> in;
3

4 Printer (const sc_module_name &name);
5 void callback (tlm_generic_payload &p, sc_time &delay);
6 };

Listing 2.1 – SystemC code that declares a module Printer.

2. Fundamentals 11

top level SystemC file that defines the configuration, modules are instantiated and

connected using the bind method provided by the socket classes [10, p. 422ff].
Given an instantiated module master with initiator socket initiator and an-

other instance slave with target socket target, binding them is done by calling

master.initiator.bind(slave.target). Alternatively, instead of binding the

initiator to the target, the target can be bound to the initiator. Both cases are equiva-

lent when dealing with TLM sockets, but regardless of who binds who, only initiators

can begin communication.

2.2.2 Simulation

Now that all primitives are in place, a simulation can be configured. In a top level

file, a function sc_main, analogous to the regular main function, is defined. This

will be the entry point of the simulation. In sc_main, the individual modules are

instantiated as objects and bound together using bind calls. This concludes the

initial configuration and is referred to as elaboration [10, p. 12ff]. After elaboration,

logging and diagnostics can be configured. Finally, the simulation is started using the

sc_start function [10, p. 21]. Depending on the arguments passed to sc_start,

the simulation runs until a certain amount of time has been simulated or until the

program is interrupted by the user.

During simulation, master modules will initiate communication with slave mod-

ules using the master’s initiator socket. Passing a message M is implemented as a

function call on the initiator socket. In turn, the initiator socket forwards M to the

target socket it is bound to by calling a method on that target socket. This method is

the callback which simulates the behavior of the slave component to message M . A

reply is generated and then forwarded to the original sender in similar fashion.

In summary, modules are used to model components as C++ classes. Their

interface is defined using sockets which are connected using bind calls. During

simulation, messages are passed, simulating the behavior of the configured system.

2.2.3 Use in this Thesis

With a better understanding of SystemC, now for the reasons why SystemC was

chosen for use with Kras.

• One of the goals of the Kras framework is extensibility. SystemC is a pub-

licly available standard [10] with an open source reference implementation

available [15].

• TLM is the right level of abstraction for Kras and SystemC has native support

for it. Using an existing framework for TLM means that primitives and concepts

2. Fundamentals 12

do not need to be re-implemented from scratch. The entire simulation logic

(sc_main, logging) is already implemented by SystemC.

• SystemC is a C++ library, simulations are just regular executables. They are

easy to incorporate in other workflows.

2.3 Available Components

SystemC acts as glue between different simulation packages. These packages provide

models of CPU cores or entire GPUs. As previously mentioned, there are many such

models available. This section takes a closer look at two packages that provide

CPU models, gem5 and OVPsim. Then, the GPU simulator GPGPU-Sim with support

for CUDA API is introduced. For each individual component, this section discusses

core features, interface and integration possibilities with SystemC.

2.3.1 gem5

The freely available gem5 simulator is described as a “simulation framework” [27].
At its core are CPU models with support for a a rich set of instruction set architec-

tures (ISAs), including ARM, MIPS, Power, and x86 with the new RISC-V architecture

being worked on [28]. The different gem5 CPU models are characterized by a trade-

off between accuracy and simulation speed: On one end of the spectrum is the

AtomicSimple model which simplifies simulation by modeling a single instruction

per cycle which is sufficient for functional evaluation. At the other extreme of the

spectrum is the more detailed and as such more demanding O3 model. It represents

a pipelined out-of-order CPU more in line with modern real-life CPUs [27].
As gem5 is a framework, there are various other features as well, including

simulation capabilities for sophisticated memory configurations and whole systems.

These additional features are flexible and can be enabled and disabled as desired [27].
Overall, gem5 offers a number of CPU models at various levels of abstractions.

Additional features are available but optional.

Usually, gem5 is configured using the Python programming language. All simula-

tion objects of gem5 are exposed both as C++ and Python classes that inherit from

a SimObject base class. To set up a simulation, a Python program initializes the

various components as Python objects. These objects are then connected by setting

object variables of the components to reference other components. A small extract

of a possible configuration file is provided in Listing 2.2.

gem5 does not use SystemC to represent models, but a compatibility layer be-

tween gem5 and SystemC TLM was added in 2017 [30]. This compatibility layer lets

2. Fundamentals 13

1 # Create a simple CPU
2 system .cpu = TimingSimpleCPU ()
3

4 # Create a memory bus , a system crossbar , in this case
5 system . membus = SystemXBar ()
6

7 # Hook the CPU ports up to the membus
8 system .cpu. icache_port = system . membus .slave
9 system .cpu. dcache_port = system . membus .slave

Listing 2.2 – Part of a gem5 configuration written in Python. First, a
CPU core is created. This core is then connected to a bus system. Code
taken from the gem5 project [29].

users combine gem5 components with SystemC modules. Integration with SystemC,

and therefore Kras, is possible.

2.3.2 OVPsim

gem5 provides cycle-accurate CPU models, i.e. CPU models that simulate a CPU one

cycle at a time. This is useful for some research and design exploration, but comes

at the cost of long execution times. It is certainly faster than RTL simulation, but

sometimes not yet enough. A faster approach to CPU simulation is just-in-time (JIT)

compilation of the simulated instructions to code that can run on the host. While

this does result in less accurate timing information, simulations can run faster which

has benefits in the functional evaluation phase [31]. A simulator that uses the

JIT approach is OVPsim, a commercial product offered by Imperas Software [32].
Users do not need to create models from scratch. While the core of OVPsim (i.e.

the simulator) is proprietary, many CPU models that use the OVPsim API are freely

available. This includes support for ARM, x86 and MIPS architectures, some of them

endorsed by the original manufacturer [33].
While it is not possible to run SystemC modules as part of an OVPsim simulation,

the opposite is possible. Wrapping OVPsim models in SystemC TLM modules is

supported out of the box. While this does introduce some overhead, users can still

benefit from the fast OVPsim CPU models [34].
OVPsim is a simulation package that focuses on speed to enable quick functional

analysis and development. As such, it is a valuable addition to the features already

offered by gem5. Because support for SystemC TLM is part of OVPsim, integration

into a framework like Kras should require little extra work.

2. Fundamentals 14

2.3.3 GPGPU-Sim

The previous subsections analyzed software packages that provide models of CPU

cores. While the CPU is at the center of a SoC, many components are still missing.

One component often found on SoCs are graphic processors (GPUs). SoCs with

built-in GPUs are produced for applications such as mobile phones and notebook

computers [35]. A software package that simulates GPUs is GPGPU-Sim [36].
GPGPU-Sim is a freely available simulation library that can model various GPU

configurations. Included in the current release are pre-configured setups for GTX480,

QuadroFX5600 and TeslaC2050 processors. GPGPU-Sim can run programs devel-

oped for OpenCL and NVIDIA CUDA APIs. The current release of GPGPU-Sim is

known to work with CUDA versions 2.3, 3.1 and 4.0 [36, 37], although the develop-

ment branch (dev) of the project has support for more recent versions, including

CUDA 8 [37].
Programs compiled to run on real CUDA hardware will work on GPGPU-Sim,

simulation with GPGPU-Sim does not require re-compilation. Usually, programs that

use CUDA APIs link against a dynamic runtime library provided by NVIDIA. This

library provides the program with the required CUDA API functions which the library

then redirects to the GPU driver. GPGPU-Sim provides a library of its own. It contains

stubs that also provide the full CUDA runtime library. But instead of forwarding

API requests to a real GPU driver, the API calls are handled by the GPGPU-Sim

GPU model. Because GPGPU-Sim acts as a shared library, CUDA programs can be

simulated without source code changes [36].
GPGPU-Sim does not offer a native SystemC TLM interface. Instead of directly

coupling GPGPU-Sim with Kras, a wrapper is required. This wrapper forwards the

API calls in simulation to GPGPU-Sim running on the host. Details are explained in

chapter 4.

Chapter 3

Method

This chapter introduces the design of Kras and the rationale behind it. A semantic

gap between SystemC source code and abstract configurations leads to an interme-

diate language. This intermediary needs to to capture the primitives that make a

configuration while also being reasonably easy to translate to SystemC code. For

this task, the established INI file format is chosen because INI is well-supported

in many programming environments and can represent all required primitives. To

transform a configuration to a running simulation, Kras translates the configuration

to SystemC code. A regular C++ compiler can compile this code which results in a

simulation binary. Finally, this chapter concludes with a discussion of the general

software architecture of Kras, which is provided as a shared library. Both console

interface and graphical editor use this library.

3.1 Primitives of Configurations

Kras wants to provide a facility for editing configurations. These configurations need

to be stored in some kind of format, such that they can be archived and re-used.

This leads to the following question: How does one describe configurations in a

file that can be saved and used again later? As there are many possible formats to

choose from, the question of what components a configuration file needs to be able

to describe has to be answered first. To put it in different words, the question is:

What are the required primitives to formulate a configuration?

3.1.1 Primitives Inherited From SystemC

SystemC TLM models are the base for this project. It is therefore useful to consider

the primitives provided by SystemC. These primitives were already described in

detail in section 2.2.

15

3. Method 16

I. SystemC modules encapsulate models of hardware. Modules are C++ classes

describing the behavior of the modeled component. Modules describe the type

of instances.

II. To place a model into a simulation, an instance (an object) of a module is

created in a top level file. To instantiate a module, certain constructor and

template parameter might be required.

III. The interface of a module is described by its sockets. While SystemC differenti-

ates between initiator and target, Kras simply refers to both of these connects

as bind points.

IV. Instantiated modules are bound using their socket’s bind method.

3.1.2 Bus Configurations as an Additional Primitive

Using this current set of primitives, it is possible to create instances of certain types

and then connect these instances by connecting their bind points with each other.

However, there is one primitive desirable for system simulation missing from this

list of primitives: A facility for describing bus configurations.

Buses, referred to as “routers” in the SystemC reference manual [10, p. 420f],
play a major role in SoC designs. After all, a bus connects the different components

with each other, rarely are components connected directly with each other.

Routers in SystemC are based on memory addresses. When a bus is set up,

components that offer services (slaves) connect to the bus at a certain starting

address S for a given width w bytes. Components that wish to use services (masters)

connect to the bus at no particular address. During simulation, routers in SystemC

do two things: (1) Forwarding and (2) address translation. When a master accesses

a memory address in the range [S, S+w), the request gets (1) forwarded to the slave

mapped at that address. During forwarding, the request address is normalized such

that an initial request for address S + x is (2) translated to a request for address x .

Where a slave is mapped into the bus remains transparent to the slave because

requests from masters are translated: From the point of view of the component

offering a service, all requests are for addresses in the range [0, w).
Bus systems can be written in SystemC TLM, indeed SystemC TLM is specifi-

cally designed to allow modeling of buses and MMIO-style interfaces [10, p. 413].
However, SystemC offers no abstract way to describe the routing setup inside a bus.

Because bus configurations are such a fundamental part of SoC designs, the Kras

configuration format has to offer bind ranges as an additional primitive.

V. Bind ranges act as bind points that multiple other bind points can connect to;

at a certain address S for a given width w. Binding to a bind range means

configuring the router.

3. Method 17

In total, five primitives were identified. Types (item I.) define the properties of

instances (item II.). In particular, they describe the available bind points (item III.)

and bind ranges (item V.) that can be used to bind (item IV.) instances together.

3.2 Configuration Format

To find a fitting file format for this task, it is helpful to consider the ways users are

expected to interact with these configurations. For one, (1) users might edit the

configuration through the graphical front-end. On the other hand, (2) users might

edit the files themselves with a text editor. Both approaches are legitimate and

should be supported.

3.2.1 SystemC

The models used by Kras are written in SystemC. It comes natural to then use

SystemC source files as the medium for storing configurations. This approach offers

advantages, in particular for use case (2) in which the user edits the configuration

using a text editor. For one, this means that a user only has to know and use one

language, SystemC, to both write models and set up configurations. A user already

familiar with SystemC does not need to learn a new language. Another advantage

is that because SystemC code is edited directly, there is no ambiguity about how

statements in the configuration file translate to SystemC code. This stands in contrast

to approaches that use a different configuration language, as this adds a translation

step that might not be immediately understood.

While these are two advantages of SystemC as a configuration format, there

is a laborious downside to this approach: SystemC code is actually C++ code.

Unfortunately, the C++ programming language is notoriously hard to parse and

understand [38] which makes it hard to load a configuration written in SystemC

into a graphical editor. This problem is an example of a semantic gap [39]: SystemC

code and graphical front-end have to encode the same configuration, but translation

between those two representations means crossing the gap between them. In this

case, the gap might be too big. that SystemC as a configuration language stands

in contrast with the initial wish for abstract configurations. Configurations should

be concise, something that might not be the case for configuration phrased in C++.

While using SystemC as a configuration language would avoid the need for another

language, the level of detail of C++ is too high. Because of this, SystemC as a

configuration format was rejected.

3. Method 18

GUI

SystemC

Simulation

 edits

 executes

(a) The SystemC configuration is edited
directly.

GUI

Intermediate Language

SystemC

Simulation

 edits

 generates

 executes

(b) The configuration is stored in an inter-
mediate language which is then turned into
a running SystemC simulation.

Figure 3.1 – Directly modifying SystemC means less layers of abstraction, but
results in a bigger semantic gap.

3.2.2 Intermediate Languages

To turn the semantic gap into a manageable one, an intermediate configuration

format offers support. Conceptually, it sits between abstract idea represented by

a graphical front-end and SystemC code. This is illustrated in Figure 3.1. This

intermediate language needs to be able to (1) concisely describe configurations while

(2) being reasonably easy to translate to SystemC. Two languages were considered:

A custom domain specific language (DSL) and the established INI format.

In both cases, all primitives are represented in roughly the same way. At the center

of a configuration are instances of a certain type and these instances have mappings

associated with them. A mapping is a key/value pair that can be a constructor or

template parameter or an active binding. All information specific to an instance is

stored in its mappings. Kras stores type information for each key to associate the

Figure 3.2 – An example setup. A CPU acts as a master and RAM as a slave.
Both components connect to a central bus.

3. Method 19

value with a constructor parameter, template parameter or binding. Only with type

information can mappings be translated to the correct SystemC code.

To illustrate both alternatives, a basic configuration is described using either

language. The setup is pictured in Figure 3.2 and consists of only three components,

a CPU and some RAM, connected with a bus. While this is a simple design, it requires

all five primitives listed in section 3.1.

3.2.3 Domain Specific Language

An approach that was considered was the design of a DSL. In general, a DSL is

a language designed for one specific use (the problem domain). Because it is so

limited in use, only required features are included. The language can be descriptive

and focus on core components, omitting ceremony and unnecessary detail [40].
An example configuration of a suggested DSL for Kras configuration is presented

in Listing 3.1. All required primitives are available. Each instance is started with

the name of the instance, followed by the type, akin to representations in some pro-

gramming languages [41, 42]. Inside curly braces, the different mappings describe

the properties of the instance. The syntax for bind ranges is short and concise.

Using this DSL has advantages. Because the DSL can focus on the problem

domain, there is no extra verbosity, the configuration is described in a succinct way.

Properties like the type of an instance are easy to represent [40].
However, DSLs also come at a price. Because for every domain a new language is

created, no library support can exist. Programmers have to write a new parser or gen-

erator to support the format. Also, the performance advantages of well-maintained

existing configuration language libraries should not be underestimated [40].

1 cpu: CPU {
2 threads : 2
3 }
4
5 bus: Bus {
6 in: cpu.out
7 out ram.in[0x1992,0x10]
8 }
9

10 ram: RAM {
11 capacity : "4G"
12 }

Listing 3.1 – A possible DSL configuration.

3. Method 20

1 [cpu]
2 type=CPU
3 threads =2
4
5 [bus]
6 type=Bus
7 in=cpu.out
8 out=ram.in@0x1992,x010
9

10 [ram]
11 type=RAM
12 capacity ="4G"

Listing 3.2 – An INI confiugraiton.

3.2.4 INI

Another considered format is the INI file format, a general serialization format. While

INI is not a formal standard, it has seen wide adoption in many MS-DOS and early

Windows applications [43, p.803] and remains in use today, e.g. in free software

projects [29, 44].
Listing 3.2 illustrates how configurations are described using INI. Sections repre-

sent instances, initiated by [sectionname] where the name of the section is also

the name of the instance. An obligatory type is required to indicate the type of the

instance. For representing bind ranges, a special format for the value was chosen,

similar to the suggested DSL, but with a syntax that does not required any square

brackets, as these are already in use in INI.

Representing configurations as INI files results in compact files. Little boiler-

plate is required with the only downside being the required type field. Because

INI libraries are available for many programming languages [45–47], reading and

creating INI files is quickly implemented. The only downside is the way ranged

mappings are implemented. They do require some extra logic, but compared to

implementing a whole language, this is a small problem.

Both approaches are viable, that is they can describe the required primitives. A

DSL means no boilerplate and unnecessary features, but it adds additional work

to programmers wanting to implement software that uses this format. INI is an

existing format with library support that remains concise. The final version of Kras

uses INI files to represent configurations.

3.3 From Configuration to Running Simulation

At this point, there is a way to formulate configurations as INI files. The next step

is translating this abstract representation into an actually running simulation that

3. Method 21

produces diagnostic output for evaluation and experimentation. Because Kras uses

SystemC to actually run the simulation the next problem is the following: How is it

possible to translate an abstract configuration file into SystemC TLM objects and

bindings, ready for simulation? For this, two approaches were considered. The first

one, dynamic setup, aims to instantiate objects dynamically during runtime. While the

dynamic setup offers flexibility in theory, it is ultimately not compatible with SystemC.

Because the first approach fails, code generation is chosen as a viable alternative.

Configuration files are translated to SystemC code which is then compiled and run

using a regular C++ tool chain.

3.3.1 Dynamic Setup

Initially, Kras was supposed to load configuration files dynamically, Figure 3.3 il-

lustrates this idea. Kras would provide a program krassim that includes all models

and peripherals and the required SystemC code for executing these models. The

configuration file would be loaded by this program, which would then dynamically

instantiate SystemC TLM modules (using the new operator), call the required bind

methods to configure the sockets and then start the simulation.

This approach was considered because it should offer some advantageous features.

For one thing, this approach should make it easy to deploy Kras. All that is required

to run a simulation is a configuration file and the krassim program. In particular, no

SystemC or other headers need to be found and included by the end user. It is a user

experience similar to emulators like QEMU where the user configures the system in

a configuration files or through command line arguments [48]. Another advantage

is that it should be relatively fast compared to more involved alternatives such as

code generation. Setting up the SystemC models and bindings in memory is fast

compared to laborious compilation. Overall, this approach was considered because

it should offer an easy to use interface and good performance.

While these are some worthwhile advantages, implementation of such a system

is simply not possible with SystemC. This is because SystemC heavily relies on

C++ templates [10, p. 426f]. Many SystemC modules require more than just con-

structor parameters for instantiating them, they also require template parameters. As

an example, all initiator and target sockets have a template parameter BUSWIDTH [10,

Config.ini

krassim

SystemC models

↻
SimulationParsed Configuration

Figure 3.3 – Dynamic Setup. All steps take place in the krassim process (gray).
krassim combines the configuration (parsed from an INI file) and SystemC
models (pre-loaded on startup).

3. Method 22

p. 456f] that defines the number of bits the modeled socket uses for communication.

In practice, that means that there is not just one kind of initiator or target socket,

rather there are many different candidates, all with a different BUSWIDTH. Template

resolution happens at compile time and only those candidates get included in the

binary that are used in the program [49, p. 21ff]. To consider the hypothetical

krassim program, it would have to know in advance what values for BUSWIDTH are

required. While it is certainly possible to limit this number to a few reasonable

choices (e.g. 8, 16, 32, etc.), this is (1) limiting regardless and (2) there are many

more template parameters which do not have immediately apparent values. Even if

they did, the size of krassim would grow exponentially with the number of template

parameters. Even worse, users would be limited to the models already included in

krassim. Adding or modifying a model would require rebuilding the entire appli-

cation. While at first glance the dynamic setup is more user-friendly, it is actually

impossible to implement and even if it were possible, very cumbersome for the user.

Because of these reasons, the dynamic setup approach was discarded.

3.3.2 Code Generation

The dynamic approach failed. As such, a different way to translate configuration

files into running simulations had to be found: The INI configuration is translated

to SystemC source code. A regular SystemC/C++ compiler then compiles this code

to a simulation executable. The gist of this approach is illustrated in Figure 3.4.

For starters, this approach is actually implementable: Four out of the five prim-

itives used in configuration files stem from SystemC, as such it is trivial to map

these primitives to SystemC. The additional primitive, bind ranges (item V.), can be

implemented as well: SystemC implementations of buses have to provide a special

method for configuring their bus configuration. During code generation, Kras calls

Config.ini

↻
Simulation

Simulation.cc

krasc

a.out SystemC Modules
C++ Headers

↻

Figure 3.4 – Code Generation. The krasc utility translates the INI file into a
regular C++ program that uses SystemC modules described in C++ headers.
Compiling the program and running the binary (a.out) means running the
simulation.

3. Method 23

this method to configure the bus during elaboration of the SystemC configuration.

The details are described in subsection 4.1.4.

In particular, templates are not a problem for code generation. Kras generates reg-

ular C++ object instantiations with all required template parameters. The additional

compilation step from SystemC source files to binary then creates the specialized

versions (candidates) of the used SystemC modules. Because regular C++ code

that uses templates as intended is used, code generation is an approach to loading

simulations from configuration files that can actually work.

Code generation in favor of a dynamic setup also makes Kras more extensible:

Adding new models or modifying existing ones does not require re-compilation of

the Kras tool chain, only of the final simulation binary. On the downside, code

generation complicates the simulation workflow. Where before one could simply

supply a program with a configuration file, now more complex setups are necessary.

To achieve reasonable productivity, this workflow will require scripting or use of

build systems. However, this can also be seen as an advantage: Because Kras now

takes up a smaller portion of the simulation workflow, the system becomes more

cooperative with others.

The initial design of Kras was that of a single binary that would load configuration

files and then run the simulation. Because of heavy use of C++ templates in SystemC

and a complicated upgrade path requiring re-compilation of the Kras tool chain, this

option was discarded in favor of code generation. Kras generates SystemC code from

configuration files. Compiling this generated code results in a SystemC simulation.

3.4 Implementation as a Shared Library

So far, this chapter was occupied with models and their simulation. This section

explains the general software architecture of Kras and the rationale behind it.

libkras

Configuration To
SystemC Compiler

Graphical Interface

Figure 3.5 – Rough software architecture of Kras. At the core is a shared library,
libkras, which provides functionality such as parsing and editing configuration
files as well as generating SystemC code. The applications that sit on top of
the library are only front-ends to the features available in the library.

3. Method 24

In general, Kras wants to offer a facility for editing simulation configurations,

including a graphical editor. These configurations then need to be run, which will

be implemented by translating configuration files to SystemC code. From this, two

main interactions a user has with Kras can be made out: (1) Editing configuration

files and (2) generating SystemC code from configurations. Considering the first

use-case, (1) editing configuration files, this can be achieved both by editing the text

file itself or by using the graphical editor. While the first option requires no additional

support from Kras, the graphical interface certainly will. To display a configuration, a

configuration file needs to be loaded, the individual instances and their connections

need to be identified. Looking at the second interaction, (2) generating SystemC

code from configuration files, the requirements are similar to (1). Just like before, to

generate a SystemC file, first the configuration file needs to be loaded and understood.

Both user interactions have similar requirements, in both cases the configuration

format always needs to be parsed into some kind of in-memory representation to

work with.

Motivated by this, the architecture of Kras is as follows: At the base is a shared

library, libkras. It can load an INI configuration and return an in-memory represen-

tation of that file, similar to how abstract syntax trees represent code fragments in

compilers [50, p. 41f]. This abstract representation can then be displayed by the

graphical editor or used to generate the appropriate SystemC code. This general

architecture is depicted in Figure 3.5.

Chapter 4

Implementation

The previous chapter described the general design behind Kras. This chapter now

follows up by documenting the implementation created for this thesis. Kras is split

in three parts: (1) A Library called libkras, (2) a command line tool krasc and a

(3) graphical user interface called Gras. libkras offers an object-oriented API for

loading, creating and modifying configurations as well as generating SystemC code.

krasc is a compiler that translates INI configurations to SystemC. Because it is a

simple command line tool is is easy to integrate krasc into build setups. The Gras tool

is a graphical editor for configuration files. Both command line tool and graphical

interface are not very useful without models to configure, so the existing simulation

packages introduced in chapter 2 were adapted to work with libkras.

4.1 Core Library

The core functionality of Kras is implemented in the form a shared library, libkras. It

offers an object-oriented API to applications for setting up configurations. Configu-

rations are created either from loading INI files or from scratch and are represented

by a tree of objects in memory (the in memory configuration). Using API calls on

objects from this tree, the configuration can be modified as desired. After editing

is complete, libkras can write the configuration back to an INI file for later use or

translate the configuration to runnable SystemC code.

The library is implemented in C++. Initial experimentation with the dynamic

setup approach are the first reason for this. The dynamic approach certainly required

a C++ code base such that SystemC models and simulation could be initialized.

While the dynamic setup approach did fail, many parts of the current implementation

were salvaged from this first attempt. C++ isn’t necessarily an ideal choice. The

language is not as productive and more prone to defects compared to a high level

language such as Java [51]. The Kras project also does not require the performance

25

4. Implementation 26

advantages of a low-level language such as C++ as it does not run any time consuming

algorithms. However, picking C++ still makes sense considering all the connections

with SystemC during development. In particular, because all models are already

written in SystemC and therefore C++, it means that the entire project only uses

one programming language instead of multiple different ones.

4.1.1 Object Oriented Configuration

To understand the libkras library, it is necessary to take a look at how configurations

are represented using the object-oriented interface.

Essentially, applications that use libkras work on a tree of objects which represents

a configuration. As an overview, Figure 4.1 illustrates the involved classes and their

relationships. At the root of a configuration is a Config object. An application is free

to create a new empty configuration from scratch or load one from an existing INI

file. An instantiated model is represented by an Instance. To create an Instance,

it requires a name unique to its Config and a type which is the model that should be

instantiated. The following subsection 4.1.2 explains how types are represented in

libkras; for now it is sufficient to understand that type information is stored together

with instances. Config and Instance are enough to instantiate C++ classes in the

final simulation if they have an empty constructor, i.e. classes that do not require

any template or constructor parameters.

What is missing is a way to create instances that require template or constructor

parameters. In addition to this, a way to represent bindings is still missing as

well. Such configuration details are stored as mappings, similar to how they are

represented in INI files. A Mapping can be understood as a single key/value pair.

It is used to configure the Instance it is associated with, that is it describes the

Config

+add_instance(...)
+remove_instance(...)
+get_instance(...)

Instance
+name: std::string
+type: &InstanceType

+add_mapping(...)
+remove_mapping(...)
+get_mapping(...)

Mapping
+type: &MappingType

+set_generic(...)
+set_bind_obj(...)
+set_bind_sock(...)
+set_bind_off(...)
+set_bind_size(...)
+get_generic()
+get_bind_obj()
+get_bind_sock()
+get_bind_off()
+get_bind_size()

*

*

Figure 4.1 – Simplified class diagram showing the three main classes involved
in a configuration. A Config makes up the root of a configuration. This con-
figuration then contains multiple Instances. These instances are configured
with key/value mappings represented by Mapping objects.

4. Implementation 27

properties of a concrete instantiation. Depending on the value of Mapping.type,

such a mapping may represent one of the following:

• A template parameter, required for instantiation.

• A constructor parameter, required for instantiation.

• A binding to a bind point, i.e. a point to point connection between two

instances.

• A binding to a bind range, including the address offset S and width w.

Depending on the type of a Mapping, different accessors have to be used. That

explains the many getters and setters in the class diagram for Mapping (Figure 4.1).

To illustrate this with an example, a mapping representing a constructor parameter

will only support Mapping::get_generic which returns a string. On the other

hand, a mapping representing a bind range supports Mapping::get_size (among

others) to return the width of the mapping. As a consequence, applications have to

check the type before accessing the individual values. If an application accesses an

inappropriate getter or setter, the library throws an exception.

A maybe more elegant implementation is possible. Instead of only one class to

represent all mappings, multiple specializations (ConstructorParameterMapping,

BindPointMapping, etc.) would inherit from an abstract base class. While this is

more in line with the ideas of object-orientation, an application would still have to

check the type of a given mapping. As such, the simpler approach that uses only one

Mapping class was chosen.

All mapping information, including bindings, is stored as strings, rather than

pointers to other instances. This allows applications to dynamically create designs

without worrying about compatibility with the current state. On the downside,

simply using strings also results in a new problem: Bindings are referenced by string,

i.e. by the (1) name of the neighboring instance and the (2) name of the neighbor’s

bind point. Both of these names might not actually exist in the current configuration,

which results in SystemC that does not compile. To avoid C++ compile errors late

in the workflow, error checking was added to the library. libkras offers functions

that search through configuration and ensure that all referenced instances and bind

points actually exist.

The three classes that represent configurations were kept simple. They act as

mere containers: Aside from storing configurations, they do not offer any features.

Additional functionality, such as error checking or code generation, is provided by

library functions that read an existing Config. Consequently, the core data structure

representing a configuration can be kept simple and as such easy to manipulate and

understand.

4. Implementation 28

4.1.2 Type Information

The previous section described how configurations can be arranged in memory

using the object oriented API. What was omitted were the origins and structure

of types, i.e. where type information comes from and how it is represented in

libkras. Type information is required so libkras knows which mappings correspond

to constructor or template parameters and which one to bindings; without type

information, SystemC code could not be generated. Type information is also useful

for interactive editors: If the library knows what mappings are available for a given

type, the tool can recommend them to the user or offer auto-complete functionality.

Both instances and mappings have types. Each Instance has an InstanceType

associated with it, in turn each Mapping is classified by a MappingType. Types are

managed by a central authority, the TypeRegistry. To illustrate the interaction

between the different classes, Figure 4.2 shows their relationships.

All types are organized in a TypeRegistry which acts as a collection for all

instance types. A challenge during development was finding a way to fill this

TypeRegistry with type information collected from SystemC modules, i.e. how

to extract the required type information (name, template parameters, constructor

parameters, bind points, bindings) from SystemC modules. Ideally, this would

happen automatically: Kras should read the SystemC files and extract the required

type information. This might be doable using the LLVM and clang libraries [52, 53],
but because of time constrains this approach could not be followed up upon.

Instead of an automatic solution, users have to do some extra work to make

SystemC modules ready for use with Kras. For the type information of SystemC

modules to be loadable by a TypeRegistry, the SystemC files need to be annotated

by the user. To allow for flexible setups, two kinds of annotations are currently

supported, internal annotations and external annotations.

TypeRegistry

+add_module(filepath)
+add_modules_from_file(filepath)
+get_instance_type(module_name): *InstanceType
+get_instance_types(): *Instance[]

InstanceType
+name: std::string

MappingType
+name: std::string

* 1

<<enumeration>>

Rhs
+TemplateParameter
+ConstructorParameter
+BindPoint
+BindRange

represents a
+rhs
1

Figure 4.2 – Simplified class diagram showing the three main classes used
for type analysis of configurations. TypeRegistry acts as a central authority
for types. An Instance is associated to an InstanceType which contains
MappingType objects for all available mappings.

4. Implementation 29

20 # define HAS_KRAS_TEMPLATE_PARAM (NAME) /* noop */
21 # define HAS_KRAS_CONSTRUCTOR_PARAM (NAME) /* noop */
22 # define HAS_KRAS_BIND_POINT (NAME) /* noop */
23 # define HAS_KRAS_BIND_RANGE (NAME) /* noop */

Listing 4.1 – These macros can be used in SystemC modules. They have
no effect in SystemC itself, but are picked up by the TypeRegistry. Exerpt
from krasmodules.hh.

Internal annotations are put directly in the SystemC file defining a module. To

do this, SystemC modules include the krasmodules.hh header (Listing 4.1). It

defines various macros that have no meaning in the SystemC language itself, but are

recognized by libkras. An annotated file can be loaded into the registry using the

TypeRegistry::add_module method. The file is loaded and the macros identified

using regular expressions. The advantage of this approach is that SystemC model

and annotation are united in one file. While it does mean code duplication, at least

the duplicated information is grouped in the same file. A limitation to consider here

is that the current tooling assumes that one SystemC file corresponds to exactly one

SystemC module named after the name of the file. This is not always the case.

Internal annotations are limited and sometimes it isn’t possible or desirable to

change the contents of a SystemC module, in particular when using modules provided

by library code. To overcome this problem, external annotations offer an alternative.

External annotations reside in separate INI files, an example is demonstrated in

Listing 4.2. Invoking the TypeRegistry::add_modules_from_file method reads

the selected INI file and parses out the required type information. While this means

that the type information is scattered in two files, once in the actual model and once

in the annotation file, it is a solution to the problem as existing SystemC code does

not require change.

Type information is required to check the validity of configuration files, offer auto-

complete functionality and generate SystemC code. Type information is collected

1 [Printer]
2 ConstructorParameter =name
3 BindPoint =in
4

5 [Sender]
6 ConstructorParameter =name
7 ConstructorParameter = dest_addr
8 BindPoint =out

Listing 4.2 – An example external annotation file. It describes two types,
Printer and Sender.

4. Implementation 30

either from internal annotations in the SystemC files themselves or from external

annotation files and organized in a TypeRegistry.

4.1.3 Parsing INI files

libkras uses INI files to store configurations. INI is an established format and as

such many libraries that parse and generate INI files are available. The library

libkras uses to parse INI files is the versatile property tree class provided by the Boost

project [47]. A property tree acts as a container for key/value pairs where values can

again be key/value pairs. Boost includes property tree parsers and generators for

many established configuration formats, including INI and JSON. Using the property

tree in libkras is straight-forward: The Boost library parses the INI file which returns

a tree. libkras iterates on that tree and builds a matching Config.

The boost library was chosen because of two main reasons. For one thing,

(1) boost is widely available and released under a liberal license [54]. The second

reason is (2) support for other serialization formats. The property tree library also

supports reading and writing formats such as JSON and XML. Should there ever be

interest in switching Kras to a more advanced configuration format, e.g. because a

new feature cannot be represented with the simple INI format, it should prove to be

relatively easy to port to JSON or XML.

4.1.4 Translation to SystemC

The ultimate destination of a Kras configuration remains simulation. To achieve this,

libkras generates SystemC code from the in-memory configuration. All components

of a Kras configuration need to be mapped to SystemC representations.

As previously explained (subsection 2.2.2), SystemC simulations work in two

phases: Elaboration and actual simulation. Elaboration sets up instances and their

bindings. Simulation supplies the instances with stimuli and records their responses.

Kras only needs to occupy itself with elaboration, actual simulation is handled by

SystemC. As such, what libkras needs to generate is the elaboration of a simulation.

Mapping instantiation, type and bind is trivial. After all, they are SystemC

primitives and as such have a direct mapping to SystemC. However, bind ranges are

not part of the SystemC standard. The standard only knows of initiator and target

sockets, grouped together as bind points in Kras. How can bind ranges, that is bus

configurations, be translated to SystemC?

Connecting initiator to target is done with a call to bind on one of the sockets.

This is possible because all SystemC TLM sockets inherit from a base class that

provides the bind method. Inspired by this, bind ranges are implemented in a

similar fashion. First, a C++ base class, IBindRange (Listing 4.3), is included.

SystemC modules that wish to implement bind ranges, e.g. classes that act as

4. Implementation 31

31 /*
32 * SystemC modules that want to offer Kras BindRange ↘

functionality
33 * should inherit from this class.
34 */
35 namespace Kras
36 {
37 template <unsigned BUSWIDTH = 32>
38 class IBindRange
39 {
40 public :
41 virtual ~ IBindRange () = default ;
42 virtual void bind_at (tlm :: tlm_target_socket <BUSWIDTH > &s, ↘

uint64_t off , uint64_t size) = 0;
43 };
44 }

Listing 4.3 – The IBindRange class offers the bind_at method. Exerpt
from krasmodules.hh.

buses or “routers” [10, p. 420f], inherit from this class. Primarily, IBindRange

contains one virtual method, bind_at, which is provided analogous to bind. Classes

that inherit form IBindRange have to implement this method such that the target

socket s will be accessible at address off for a total of size bytes. Compared to

previous discussion (subsection 3.1.2), off is analogous to start address S and

size is analogous to width w. Note that s may only be a target socket. To connect

an initiator socket to the bus, the bus will have to provide at least one initiator socket

of its own, but that is up to the implementation of the bus module. In short, buses

have to inherit from the IBindRange class and provide the bind_at method. libkras

translate bind range connections to bind_at invocations.

Now with all primitives accounted for, elaboration code can be generated. In

libkras, SystemC elaboration is split in two phases: First, (1) instantiation which

creates the individual objects and second, (2) binding, which connects the individual

objects with each other. This split simplifies code generation. The (1) first step creates

individual objects which are totally independent from each other. It does not matter

in which order libkras creates these instances, any order is semantically identical.

Therefore it is sufficient to iterate over all available instances and emit an object

instantiation. The (2) second step creates dependencies between instances (both

need to exist for a binding to be possible), but the individual bindings themselves

are independent from each other. Again, SystemC translation is easy: For each

binding of every instance, libkras emits a bind or bind_at call. This shows that

code generation is made easy by splitting up the process into multiple steps.

4. Implementation 32

4.2 Command Line Interface

With the library in place, implementation of command line tools is trivial. Provided

with Kras are two command line utilities.

• The krasc program translates INI configurations to SystemC sources. First,

depending on its arguments, krasc loads type annotations from an arbi-

trary number of SystemC modules and external annotation files to create

a TypeRegistry. With the type information loaded, krasc parses the the INI

configuration file and generates matching SystemC code.

All hard work is handled by the libkras library. The only contribution of krasc

is that the generated code can be inserted in a prepared template file.

• Additionally, the krasmodinfo tool is provided. It reads internal or external

annotations and prints them in the expected format for external annotations.

krasmodinfo is only provided for debugging annotations and again delegates

all work to the library.

4.3 Graphical User Interface

Compared to building the command line tools, implementing the graphical user

interface Gras required more work. This stems from the fact that building a graphical

editor is more involved than calling library functions: Data structures of the library

need to be displayed and be editable using mouse and keyboard.

During design of Gras, the question was how to represent configurations in a

meaningful manner. Previous work on graphical editing of SystemC RTL models [55,

56] and the user interface of the big virtual platforms (Platform Architect, Vista)

suggest a schematic overview of the configuration; individual instances are repre-

sented as rectangles with their connections indicated by lines between them. This

approach was taken up for Gras as well. Figure 4.3 shows the main interface of Gras:

Instances can be dropped in, arranged and connected with the mouse.

While there remains lots of room for additional features, e.g. a source code

viewer [56] or automatic integration in build systems, the set goal for Gras was to

create a functional prototype that can display configurations as a schematic and

allows users to edit and save these configurations.

Gras is implemented with the Qt framework. Qt is a set of C++ libraries that

can be used to build rich graphical applications. In fact, Qt contains more than just

a framework for building graphical applications: It includes commonly required

data structures such as strings, lists and hash maps [57]. Because Qt API works

primarily with Qt data structures, Gras uses the Qt data structures in favor of the

4. Implementation 33

Figure 4.3 – Gras editor showing a basic setup. Individual instances are
represented by rectangles, bindings by a line between instances.

C++ standard template library (STL) [58] alternatives, which are used in libkras.

This does introduce some boilerplate code and runtime cost as data needs to be

constantly translated between STL and Qt data structures, but in practice this proved

to be insignificant.

When the GUI is started, it creates an empty Config object or loads one from an

existing INI file. The graphical representation of the configuration is then adapted

to fit the state of the Config. When the user clicks on an instance widget, a table on

the right (Figure 4.4, the mapping table) can be used to view or edit the individual

mappings of that instance. This introduces a problem: There are now two repre-

sentations of the configuration, once inside the library code (wrapped in a Config

object) and again in the state of the graphical widgets.

A challenge during development was how to keep the contents of the mapping

table in sync with the in-memory configuration. Qt provides a streamlined solution

to solve this issue in the form of the model view approach [59]. The idea behind

this approach is the following: Provided a data source and a widget that displays

that data (the view, e.g. a table in the GUI), an intermediate component, the model,

handles interaction between data and view. In the projects’ specific case, the data is

provided by an Instance and the view is a table on the sidebar. In between sits the

model, implemented as a C++ class, that on one hand interacts with the data source

using its API (the libkras API) and on the other hand can interact with the view.

Callback functions in the model get called when data is entered or changed in the

4. Implementation 34

Figure 4.4 – Gras mapping table showing the individual mappings of the
selected instance.

table, triggering a change in the underlying Instance. This way, the underlying in-

memory representation always stays in sync with what is displayed in the graphical

interface.

4.4 Porting SystemC Modules to Kras

The chapter on fundamentals gave an overview over three simulation packages,

gem5, OVPsim and GPGPU-Sim. To integrate them into Kras, these components

need to be accessible as SystemC modules annotated for use in Kras. To put it in

more concrete terms, all simulators should be represented as a SystemC module that

is accessible through bind points.

4.4.1 gem5

Recent work added a bridge between SystemC and gem5 [30]. Similar to how

SystemC TLM uses initiator and target sockets, gem5 uses master ports and slave ports

4. Implementation 35

for communication. A compatibility layer bridges SystemC sockets and gem5 ports

with transactors. A transactor connects a SystemC initiator to a gem5 slave or vice

versa a gem5 master to a SystemC target.

To instantiate a gem5 CPU in a Kras configuration, two SystemC modules provided

as part of the gem5 compatibility layer are sufficient.

1. Gem5SimControl is a SystemC module that acts as a central instance for gem5,

i.e. the simulated gem5 cores. A SystemC configuration that wishes to use

gem5 models has to instantiate exactly one Gem5SimControl.

The Gem5SimControlmodule requires a configuration file during instantiation.

Users usually set up gem5 using a Python program, gem5 executes the Python

code which results in an INI file. This INI file contains the full setup of the

gem5 configuration; to set up a Gem5SimControl, such an INI file is required.

To get this INI file for use in SystemC, users can write a basic Python configu-

ration file and then have the gem5 binary translate it to INI. The authors of

the SystemC bridge encourage future work on automating or finding ways to

omit this step, but currently there is no working solution [30].

2. For SystemC modules to interact with the gem5 cores, a transactor is necessary.

The Gem5SlaveTransactor offers that functionality. This transactor has one

target socket sim_control and one initiator socket socket.

Connecting sim_control to the singleton Gem5SimControl and socket to a

bus or peripheral is enough to expose the CPU to SystemC.

Both of these modules, Gem5SimControl and Gem5SlaveTransactor, are pro-

vided by the gem5 project for use in SystemC configurations. Because they are

provided as library code, external annotations provide Kras type information for

both modules.

4.4.2 OVPsim

OVPsim is advertised as a simulation package that supports SystemC out of the

box [32]. Indeed, an installation of OVPsim contains various SystemC modules that

represent OVP CPU models.

For example, the processor.igen.hpp1 header includes a SystemC module arm

which represents an ARM CPU. Configuration of this arm module is simple, it only

requires a configuration object which contains the variant of ARM core to simulate,

e.g. Cortex-A57MPx4, as a string. For communication with other SystemC modules,

arm provides two initiator sockets, DATA and INSTRUCTION; a configuration binds

1ImperasLib/source/arm.ovpworld.org/processor/arm/1.0/tlm2.0/processor.igen.hpp
in Version 20170511.

4. Implementation 36

them to data and instruction memory. If both data and instruction memory are

the same, i.e. refer to the same instance, it’s easy to write a wrapper for arm that

forwards requests from both sockets to a single RAM or bus connect.

To use OVPsim modules in Kras, annotation is necessary. If a configuration

contains the SystemC modules as-is, external annotation is the right choice. However,

if a user decides to write a wrapper (e.g. to combine the DATA and INSTRUCTION

sockets), internal annotations should be preferred.

4.4.3 GPGPU-Sim

GPGPU-Sim does not support SystemC TLM out of the box. As such, adding support

is more involved, but possible.

First, a refresher on how GPGPU-Sim is usually used. From the point of view

of an application, GPGPU-Sim provides the interface of a real graphics API, such

as the CUDA API. This is achieved with the runtime library: The application links

against this library which then forwards all request to the GPU model. As such,

GPU simulation occurs on the machine that is also running the application using

the runtime library. This is undesirable in the case of simulation: When a Kras

configuration includes a GPU, GPU simulation should occur on the host machine

instead of on the simulated gem5 or OVPsim guest. To solve this, an additional layer

of abstraction is necessary.

Figure 4.5 illustrates how guest code can interact with a GPGPU-Sim GPU model.

A SystemC module presenting the GPU to the simulated system gets added to

the configuration. Guest code can access this GPU using MMIO registers to issue

CUDA API calls. What registers to read and write with which values is wrapped in

a guest runtime library, a library the guest code links against. This guest runtime

library offers the full CUDA API to simulated programs, such that simulation remains

transparent to guests. Once an API call has reached the SystemC GPU, it uses the

↻
Guest CodeHost Code

GPGPU-sim
GPU model

Host Runtime
Library

SystemC
Module "Gpu"

Guest Runtime
Library

Simulated
Application

callsMMIOcallscalls

Figure 4.5 – Communication between guest code and simulated GPU. The
guest code uses its own runtime library to talk to a SystemC module which
represents the GPU to the guest. This SystemC module uses the GPGPU-
Sim CUDA runtime library to forward API calls to the GPGPU-Sim GPU model.
As such, GPU simulation can run on the host.

4. Implementation 37

GPGPU-Sim runtime library, the host runtime library, to forward the API call to the

GPGPU-Sim model.

With these components in place, GPGPU-Sim can be integrated in SystemC. In

total, only one SystemC module needs to be written. Being a new component for

Kras, internal annotation is the reasonable choice.

Chapter 5

Evaluation

As a final step, the implementation had to be evaluated. This chapter is structured

in two sections. First, (1) the evaluation investigates the overhead introduced by

SystemC coupling compared to running the simulators as-is. It becomes apparent

that using existing simulators with Kras, or more specifically, in conjunction with

SystemC modules, can introduce a serious overhead. Second, (2) the goals stated in

chapter 1 are taken up again: The implementation of Kras does follow the ideas of

these initial goals, however things could be improved further.

5.1 Cost of SystemC Coupling

Kras uses SystemC to combine various existing simulation packages to peripherals

described in SystemC. If a memory module implemented in SystemC acts as the main

memory of the simulated system, all memory requests of the CPU need to access that

module. Instead of using an internal implementation provided by the simulation

package, the CPU communicates with the SystemC memory implementation using

SystemC sockets. Communication through sockets does introduce overhead as

messages need to get marshaled on the sender side and then again un-marshaled

by the receiver. Here, the question of evaluation was to what extend this overhead

adds to simulation time.

5.1.1 Test Setup

For evaluation of SystemC overhead, a matching configuration was set up both

with and without SystemC coupling configured by Kras. In either case, a CPU core

(provided by gem5 or OVPsim) communicates through a bus with memory to run

a given benchmark program. On one hand, bus and memory are implemented in

SystemC. Here, all memory operations of the simulated CPU have to pass through

39

5. Evaluation 40

SystemC bus and memory. On the other hand, the setup without Kras (referred

to as the vanilla setup), used bus and memory implementations provided by the

simulation packages themselves. Comparing simulation times for both vanilla and

non-vanilla setup should give insights into what to expect from SystemC coupling.

Regarding software, a total of four benchmark programs gave insight into simula-

tor behavior. On one hand, there are three stand-alone benchmarks that implement

a single algorithm, based on previous discussion in literature [60]. They differ in

the expected amount of load on memory and therefore the bus and the SystemC

connect as a whole.

• The Ackermann benchmark A(m, n) calculates the result of the Ackermann

function A(m, n) [61]. Because Ackermann is recursive but not tail-recursive,

computing values of A requires many recursive function calls for most m, n.

Many recursive function calls translate to lots of work on stack memory, as

such Ackermann should show heavy load on bus and memory.

• The Sieve benchmark S(n) calculates the biggest prime number p ≤ n. For

this, the Sieve of Eratosthenes algorithm [62] is used which works on an array

of size n. Load on memory was expected to be great as every iteration of the

algorithm does work on the array.

• The Monte Carlo benchmark Π(n) approximates the value of π by sampling n

randomly generated points [63]. In the implementation used for evaluation,

generating a random number and evaluating the result does not require a lot

of memory accesses. In consequence, load on the bus was expected to be low.

In addition to these three algorithmic examples, a suite of benchmarks, Core-

mark [64], runs various kinds of benchmarks, including matrix multiplication, list

operations and CRC calculation. It is convenient because the result is a condensed

score (iterations per second) that is easy to compare.

5.1.2 Results

This section presents the measured numbers and the overhead introduced by SystemC

coupling. Possible explanations and conclusions are then drawn in the section

afterwards. Because of problems related to software licensing, the benchmarks for

gem5 and OVP ran on separate machines. This is not a problem as this evaluation is

interested in the performance differences of simulation with and without SystemC

coupling. Here, the differences between gem5 and OVPsim are not relevant.

First, coupling with gem5 was evaluated. For this, machine based on a 3.4 GHz

Intel i7-2600 CPU with 16 GiB of RAM and the Debian 9.5 operating system ran

gem5 commit 21a691748. gem5 includes not just one, but multiple CPU models of

5. Evaluation 41

Coremark* Ackermann** Monte Carlo** Sieve**

Timing Simple 0.3 70.5 41.1 27.1
Timing Simple w/ Kras 0.8 211.8 128.5 84.7
O3 0.6 109.9 57.7 30.2
O3 w/ Kras 0.1 993.4 396.3 447.1

Table 5.1 – Simulation using gem5 cores with and without Kras integration.
For gem5, the benchmarks calculated A(3, 7), Π(105) and S(9× 104).
*) Iterations per second. More is better. **) Seconds. Less is better.

Coremark Ackermann Monte Carlo Sieve

Timing Simple 2.7 3.0 3.1 3.1
O3 6.0 9.0 6.9 14.8

Table 5.2 – Overhead x introduced by Kras. The setup using SystemC coupling
takes x-times as long as the vanilla version to run the same workload.

varying levels of accuracy. For this evaluation, two CPU models were chosen, the

abstract but fast Timing Simple model and the more detailed but, in comparison,

slower O3 model. In either case, gem5 was configured to simulate an aarch64

instruction set architecture (ISA). The results of the different benchmarks are listed

in Table 5.1. Table 5.2 lists the overhead Kras introduces. It is clear from these

results that SystemC coupling introduces a notable overhead. In the case of the the

Timing Simple CPU, the version that uses a SystemC memory and bus typically takes

three times as long to run. If the more detailed O3 model is chosen, simulation may

increase in an order of magnitude.

Next, OVPsim was pulled for evaluation as well. All benchmarks ran on a

2.83 GHz Intel Core 2 Quad Q95550 CPU with 4 GiB of RAM and the CentOS 7.4.1708

operating system, OVPsim release 20170511. OVPsim offers various CPU models and

architectures. For evaluation, the arm SystemC module in processor.igen.hpp

was configured to simulate the properties of a Cortex-A53MPx1 CPU which is based

on the aarch64 ISA. As before, Table 5.3 lists the actual Coremark score and execution

times while Table 5.4 shows the overhead introduced by Kras and SystemC coupling.

In the case of OVPsim, the difference can only be described as dramatic. Using the

Coremark* Ackermann** Monte Carlo** Sieve**

OVPsim 1989 2 26 4
OVPsim w/ Kras 4 754 7387 5164

Table 5.3 – Simulation using OVPsim cores with and without Kras integration.
For OVPsim, the benchmarks calculated A(3, 10), Π(108) and S(N/A).
*) Iterations per second. More is better. **) Seconds. Less is better.

5. Evaluation 42

Coremark Ackermann Monte Carlo Sieve

OVPsim 798 377 284 1291

Table 5.4 – Overhead x introduced by Kras. The setup using SystemC coupling
takes x-times as long as the vanilla version to run the same workload.

version with SystemC bus and memory resulted in up to three orders of magnitude

worse performance.

5.1.3 Origin of Overhead

Kras, or rather, SystemC coupling, introduces an overhead. While in the case of the

generally slower gem5 cores, an overhead between three to 15 times the vanilla

runtime can be observed, in the case of OVPsim the difference is even greater. This

section investigates the origins of this overhead.

Before starting the actual discussion, it should be noted that the gem5 results are

somewhat unexpected. Running a fast Timing Simple CPU with SystemC coupling

takes about three times as long as without it, at the same time, running the slower

O3 model with SystemC can add cost of an order of magnitude. The penalty of

SystemC coupling should be higher if running SystemC code makes up a bigger

percentage of the total runtime. This should be the case for the Timing Simple model

as the CPU model itself spends less time than the O3 model to calculate each step of

the CPU.

With this oddity in mind, the simulations were profiled to find out exactly where

the programs spend their execution time. This should give insight into who is

to blame for the reduced runtime of non-vanilla simulations. Two profilers were

employed for this, Callgrind and gprof.

5.1.3.1 Overhead for gem5 Configurations

Callgrind [65] profiles a running program and counts the number of function calls to

each function. With Callgrind, it is possible to estimate how much time the simulation

binary spends in simulator code, the SystemC library or the code implementing

bus and RAM peripherals. Table 5.5 shows the result for a run of the Ackermann

benchmark. On one hand, these results are as expected: Using the more detailed

and therefore slower O3 model leads to SystemC and peripheral code making up

less of the total function calls, that is the more expensive simulation takes up most

of the total execution time. On the other hand, this remains in contradiction to the

results in Table 5.2, where the relative overhead of SystemC coupling is greater in

the case of the O3 CPU. Notably, the O3 version calls way more C/C++ standard

library functions, in particular memory management functions.

5. Evaluation 43

gem5 SystemC library Peripherals C/C++ stdlib

Timing Simple 32.7 26.6 17.2 19.3
O3 52.8 3.8 5.7 37.1

Table 5.5 – Percentage of function calls into gem5 code, SystemC library code
or peripheral logic (bus and memory) when computing A(0, 2). The numbers
do not add up to 100% as this table omits some standard runtime functions.

Because Callgrind only counts the number of function calls, but not the time

spent in a function, the gprof profiler [66, 67] was also used to profile the generated

simulation binaries. It measures the amount of time each function takes to run. The

results of gprof line up with the results of Callgrind: The O3 simulation spends less

time in SystemC and peripheral code than the Timing Simple code.

It remains unclear why O3 simulations have such a big performance penalty

compared to Timing Simple simulations. The most likely result from the traces

leads to the non-vanilla O3 version spending a lot of time in memory allocation

routines. Another possibility is that the gem5 cores are configured differently when

running vanilla or together with SystemC modules. This could be attributed to the,

admittedly now thoroughly checked, test setup or because of a bug in gem5.

The take-away from these results is that in the case of gem5, impact of SystemC

coupling depends on the type of CPU model, not so much the performance of the

SystemC peripherals. Regardless, overhead remains in levels that might be acceptable

for many applications.

5.1.3.2 Overhead for OVPsim Configurations

To find out where the Kras setup using OVPsim spends most of its time, the resulting

binary was benchmarked with gprof as well. Looking at all functions that make up

at least 0.01% of execution time shows that at least 85% of execution time is spent

with SystemC library code or the SystemC peripherals (bus, memory) used for the

benchmarks. A lot of time is also spent in memory allocation routines related to

std::vector, likely caused by SystemC coupling code. The conclusion must be that

the dramatic overhead for OVPsim simulation is caused almost entirely by SystemC

coupling and peripherals. Here, overhead could be reduced by writing more efficient

SystemC modules, but because the coupling alone produces much overhead, the

problem is not completely negatable.

5.1.4 Differences Depending on Workload

When choosing the benchmarks, a guiding factor was the amount of load on the bus.

This is to evaluate how SystemC coupling reacts to different kinds of workloads. The

Ackermann and Sieve benchmarks should do more work on memory than the Sieve

5. Evaluation 44

benchmark. Curiously, there is no considerable difference in added overhead when

running the benchmarks on a Timing Simple CPU model. Only the O3 and OVPsim

models show the expected behavior, here the Monte Carlo benchmark runs with less

overhead compared to the others.

Looking at memory access pattern by observing the simulated memory, it became

clear that the majority of memory access for all benchmarks is not on data but on

instructions. This explains the observed numbers. The Timing Simple model does

not use caches, but the O3 models does. While the Timing Simple model needs

to access memory for every instruction, the O3 model can take advantage of its

cache. Only on the O3 model do different programs observe different memory access

patterns.

5.1.5 Consequences

SystemC introduces an overhead to simulation time that cannot be ignored. Espe-

cially in the case of OVPsim, where Kras adds up to three orders of magnitude to

simulation time. However, the cost might be worth it: Coupling with SystemC allows

for way more dynamic and interoperable designs. For example, it is possible to set

up complex memory configurations in SystemC and then investigate how different

processor models behave without the need to re-implement the memory setups for

different simulators. Complex SystemC implementations of peripherals might not be

the fastest, but the programmer can fine-tune their models to output just the right

level of diagnostic information.

The result of this first step of evaluation has to be that a system designer that

couples existing simulators with SystemC will have to expect slowdowns. Depending

on the CPU model in use, it can be significant how SystemC models of peripherals

are implemented. The bus and memory used for this evaluation were implemented

naively, the bus in particular introduced linear search time with every request. Re-

ducing the runtime of peripherals can be helpful in reducing simulation time, though

judging from the profiling result, will not make a drastic change as unavoidable

SystemC overhead and coupling logic of the simulation cores themselves makes up

the majority of added simulation time.

5.2 Goals

The initial discussion in chapter 1 made out three design goals that should be

followed in the design of Kras. This section takes a look at them again and rates the

implementation on compliance.

5. Evaluation 45

5.2.1 Extensibility

Kras is supposed to be extensible, that is it should be easy to extend to different

simulators.

This goal motivated SystemC as a glue that connects the different models and

components. In the cases of gem5 and OVP, both of which already have a SystemC

interface, implementation with Kras was simple and required little extra work. The

described approach for integrating GPGPU-Sim with Kras on the other hand requires

an additional guest runtime library and a matching proxy SystemC module that

forwards requests to the actual GPGPU-Sim implementation. This demonstrates that

integration with non-SystemC components is possible but more involved. As such,

Kras is at least as extensible as the existing virtual platforms built upon SystemC.

While it is somewhat easy to integrate SystemC modules into Kras, the current

approach is not perfect. SystemC modules need to be annotated manually for them

to work in conjunction with Kras. This extra step impedes extensibility as it means

extra work, extending Kras becomes more laborious than it could be. It would be

better if Kras offered facilities for parsing meta data out of SystemC files. External

annotations in particular proved to be problematic when using the graphical editor

Gras; importing a configuration without importing the matching annotations means

that Gras does not know how to represent the interface of the different interfaces.

5.2.2 Abstract Configurations

The second goal of Kras was that it should work with abstract configurations. The

following points illustrate how this goal manifests itself in the final implementation

and discusses how effective these decisions were in keeping the focus on the abstract

design and not on detail:

• Configurations are stored in INI files and condensed to the most essential. This

should make it harder to over-complicate the design description with details

compared to using full programming languages like SystemC itself to define

configurations.

On the downside, even just representing bus mapping required some special

syntax (subsection 3.2.4). Should there ever arise the need to extend Kras con-

figuration files, it might become harder and harder to work with the existing

INI format. Maybe the desire for abstract configurations stands in contrast

with flexibility for new features in the future.

• Part of the implementation is a graphical interface, Gras. It is easy to configure

configurations using Gras and does not require tweaking C++ code. Figure 4.3

is a nice example of how a configuration can be displayed in an easy to grasp

way.

5. Evaluation 46

While the way configurations are represented is satisfactory, generating a simulation

is not as convenient as it should be. This is because, as it stands, Kras configurations

are a “leaky abstraction” [68], an abstraction above SystemC where SystemC details

shine though and need to be taken care of by the user. The problems are the

following:

• Constructor parameters required for instantiation have a certain C++ type.

Depending on the C++ type, literals need to be formatted differently, e.g. a

std::string needs to be quoted (¨) while a regular int requires no quoting.

Users of Kras have to be aware of this and format mapping values accordingly.

• C++ classes can have polymorphic constructors, i.e. multiple constructors with

different parameter lists. Kras currently does not support this C++ feature, it

assumes that every SystemC module has exactly one constructor.

5.2.3 Cooperability

The final goal was cooperability. Kras as a framework and tool chain should be easy

to integrate into other workflows. This goals has been achieved.

For one, implementation as a library means that Kras can be used to build new

tools. It was easy to re-use the library logic in both command line tool and graphical

editor. It should be similarly easy to integrate the library into other tools, in theory

even into full fledged virtual systems. This is the advantages of the shared library

approach.

Looking at the existing command line interface, krasc, it works well in scripts and

automated context as it is only a simple text-based compiler for INI configuration

files. While the library is easy to integrate into other applications, krasc is easy to

integrate into scripted workflows because it is only a small component with one

designated task rather than one all-encompassing suite.

Chapter 6

Conclusion

SoCs combine different components in one system. During development, simulations

help the designer or researcher to make out distinct properties of the final system

ahead of time. For simulation, many tools are available that don’t necessarily work

together; combining these tools for maximum efficiency can be difficult. This thesis

demonstrated an approach for integrating different simulator packages into one easy

to use editor.

SystemC TLM provides a good base for combining different models into one

configuration. It is already supported by some simulation packages and those that

aren’t can be converted to use SystemC, as was demonstrated for the GPGPU-Sim

GPU simulator. While SystemC provides almost all required primitives for SoC design,

it does not include a standardized way for describing bus systems. For this, this

thesis suggested the concept of bind ranges. Connecting to a bind range socket

means configuring the bus. For simulation, Kras translates abstract configurations to

SystemC code. This thesis argued that simulations based on SystemC will always

require code generation and compilation as SystemC relies on C++ templates.

One hindrance during development was parsing type information out of SystemC

files, the current approach of manual annotation proved to be not satisfactory. It

should be replaced with an automatic solution, even if difficult to implement. The

biggest problem with SystemC coupling was, as evaluation showed, that integration

with SystemC can be quite expensive, which needs to be taken into account when

choosing a simulation environment.

In summary, it is certainly possible to build a framework that combines different

simulation software and makes them easy to configure. This does introduce an

overhead which can be significant. A solution like Kras will not be useful in all

situations but if flexibility and interoperability are the main concerns, the approach

taken with Kras is a reasonable one.

47

List of Figures

1.1 How SystemC runs simulations. Individual models are combined in a

top level file model.cc which is compiled using a regular C++ com-

piler. The resulting executable is run as a normal program and outputs

logging information as configured. 4

2.1 Differences in schematics depending on abstraction level. RTL schemat-

ics consists of registers and transfer logic while the building blocks in

TLM schematics are abstract components. A line in the RTL schematic

represents a wire on the circuit while a line in a TLM schematic

represents a path for messages. 9

3.1 Directly modifying SystemC means less layers of abstraction, but

results in a bigger semantic gap. 18

3.2 An example setup. A CPU acts as a master and RAM as a slave. Both

components connect to a central bus. 18

3.3 Dynamic Setup. All steps take place in the krassim process (gray).

krassim combines the configuration (parsed from an INI file) and

SystemC models (pre-loaded on startup). 21

3.4 Code Generation. The krasc utility translates the INI file into a regular

C++ program that uses SystemC modules described in C++ head-

ers. Compiling the program and running the binary (a.out) means

running the simulation. 22

3.5 Rough software architecture of Kras. At the core is a shared library,

libkras, which provides functionality such as parsing and editing con-

figuration files as well as generating SystemC code. The applications

that sit on top of the library are only front-ends to the features avail-

able in the library. 23

49

List of Figures 50

4.1 Simplified class diagram showing the three main classes involved in

a configuration. A Config makes up the root of a configuration. This

configuration then contains multiple Instances. These instances are

configured with key/value mappings represented by Mapping objects. 26

4.2 Simplified class diagram showing the three main classes used for type

analysis of configurations. TypeRegistry acts as a central authority

for types. An Instance is associated to an InstanceType which

contains MappingType objects for all available mappings. 28

4.3 Gras editor showing a basic setup. Individual instances are repre-

sented by rectangles, bindings by a line between instances. 33

4.4 Gras mapping table showing the individual mappings of the selected

instance. 34

4.5 Communication between guest code and simulated GPU. The guest

code uses its own runtime library to talk to a SystemC module which

represents the GPU to the guest. This SystemC module uses the

GPGPU-Sim CUDA runtime library to forward API calls to the GPGPU-

Sim GPU model. As such, GPU simulation can run on the host. 36

List of Tables

5.1 Simulation using gem5 cores with and without Kras integration. For

gem5, the benchmarks calculated A(3, 7), Π(105) and S(9× 104). *)

Iterations per second. More is better. **) Seconds. Less is better. . . . 41

5.2 Overhead x introduced by Kras. The setup using SystemC coupling

takes x-times as long as the vanilla version to run the same workload. 41

5.3 Simulation using OVPsim cores with and without Kras integration.

For OVPsim, the benchmarks calculated A(3, 10), Π(108) and S(N/A).
*) Iterations per second. More is better. **) Seconds. Less is better. . 41

5.4 Overhead x introduced by Kras. The setup using SystemC coupling

takes x-times as long as the vanilla version to run the same workload. 42

5.5 Percentage of function calls into gem5 code, SystemC library code

or peripheral logic (bus and memory) when computing A(0, 2). The

numbers do not add up to 100% as this table omits some standard

runtime functions. 43

51

Bibliography

[1] (2002). ECE1767: Design for Test and Testability, University of Toronto,

[Online]. Available: http://www.eecg.toronto.edu/∼ece1767/notes/

pect9.pdf (visited on 2018-07-13) (cit. on p. 1).

[2] F. Samie, L. Bauer, and J. Henkel, “IoT Technologies for Embedded Comput-

ing: A Survey,” in Proceedings of the Eleventh IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis, ser. CODES

’16, Pittsburgh, Pennsylvania: ACM, 2016, 8:1–8:10. [Online]. Available:

http://doi.acm.org/10.1145/2968456.2974004 (cit. on p. 1).

[3] P. Harrod, “Testing reusable IP-a case study,” in Test Conference, 1999. Pro-

ceedings. International, IEEE, 1999, pp. 493–498 (cit. on p. 2).

[4] R. Rajsuman, System-on-a-chip: Design and Test. Artech House, Inc., 2000,

ch. 1 (cit. on p. 2).

[5] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous

chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38, 2005 (cit. on

p. 2).

[6] S. Pasricha et al., “Transaction level modeling of SoC with SystemC 2.0,” in

Synopsys User Group Conference (SNUG), vol. 3, 2002, p. 3 (cit. on p. 2).

[7] A. Hunt and D. Thomas, The Pragmatic Programmer. Addison-Wesley, 2000

(cit. on p. 2).

[8] K. Popovici and A. Jerraya, “Virtual Platforms in System-on-Chip Design,” in

Design Automation Conference, 2010 (cit. on pp. 3, 4).

[9] Synopsis. (2018). Platform Architect Datasheet, [Online]. Available:

https://www.synopsys.com/verification/virtual-prototyping/

platform-architect.html (visited on 2018-10-03) (cit. on p. 3).

[10] IEEE Standards Association and others, “IEEE Standard for standard SystemC

language reference manual,” IEEE Computer Society, 2012 (cit. on pp. 3, 4,

10, 11, 16, 21, 31).

53

http://www.eecg.toronto.edu/~ece1767/notes/pect9.pdf
http://www.eecg.toronto.edu/~ece1767/notes/pect9.pdf
http://doi.acm.org/10.1145/2968456.2974004
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html

Bibliography 54

[11] M. Tovar Rascon and P. Elfborg, “Virtual Cycle-accurate Hardware and Soft-

ware Co-simulation Platform for Cellular IoT,” 2017 (cit. on p. 3).

[12] Mentor Graphics, “Vista Virtual Prototyping Datasheet,” 2015. [Online]. Avail-

able: https://www.mentor.com/esl/vista/virtual-prototyping/

(visited on 2018-10-03) (cit. on p. 3).

[13] “IEEE/IEC International Standard - IP-XACT, Standard Structure for Packaging,

Integrating, and Reusing IP within Tool Flows,” IEC 62014-4 IEEE Std 1685-

2009, pp. 1–373, 2015-03 (cit. on p. 4).

[14] J. A. Swanson. (). Building an IP-XACT Design and Verification Environ-

ment with DesignWare IP, [Online]. Available: https://www.synopsys.

com/designware- ip/technical- bulletin/design- verification-

environment.html (visited on 2018-10-03) (cit. on p. 4).

[15] (2018). SystemC, Accellera Systems Inititative, [Online]. Available: https:

//www.accellera.org/downloads/standards/systemc (visited on 2018-

07-19) (cit. on pp. 5, 10, 11).

[16] MathWorks, Inc. (2018). HDL Verifier: Verify VHDL and Verilog using HDL

simulators and FPGA-in-the-loop test benches, [Online]. Available: https:

//www.mathworks.com/products/hdl-verifier.html (visited on 2018-

10-03) (cit. on p. 5).

[17] Arm Limited (or its affiliates). (2018). Arm SoC Designer, [Online]. Avail-

able: https://developer.arm.com/products/system-design/cycle-

models/arm-soc-designer (visited on 2018-10-03) (cit. on p. 5).

[18] G. Hohpe, B. Woolf, et al., “Enterprise integration patterns,” 2003 (cit. on

p. 5).

[19] W. D. Kelton, J. S. Smith, and D. T. Sturrock, Simio & Simulation: Modeling,

Analysis, Applications. Learning Solutions, 2011 (cit. on p. 7).

[20] R. Jindal and K. Jain, “Verification of transaction-level SystemC models using

RTL testbenches,” in Formal Methods and Models for Co-Design, 2003. MEM-

OCODE’03. Proceedings. First ACM and IEEE International Conference on, IEEE,

2003, pp. 199–203 (cit. on pp. 7, 8).

[21] S. Meftali, J. Vennin, and J.-L. Dekeyser, “A fast SystemC simulation method-

ology fo Multi-Level IP/SoC design,” in IFIP Intl. Workshop on IP Based SoC

Design, 2003 (cit. on pp. 7, 8).

[22] J. Reichardt and B. Schwarz, VHDL-Synthese: Entwurf digitaler Schaltungen

und Systeme. Walter de Gruyter, 2012 (cit. on p. 8).

https://www.mentor.com/esl/vista/virtual-prototyping/
https://www.synopsys.com/designware-ip/technical-bulletin/design-verification-environment.html
https://www.synopsys.com/designware-ip/technical-bulletin/design-verification-environment.html
https://www.synopsys.com/designware-ip/technical-bulletin/design-verification-environment.html
https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
https://www.mathworks.com/products/hdl-verifier.html
https://www.mathworks.com/products/hdl-verifier.html
https://developer.arm.com/products/system-design/cycle-models/arm-soc-designer
https://developer.arm.com/products/system-design/cycle-models/arm-soc-designer

Bibliography 55

[23] L. Cai and D. Gajski, “Transaction Level Modeling: An Overview,” in Proceed-

ings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, ser. CODES+ISSS ’03, Newport Beach, CA,

USA: ACM, 2003, pp. 19–24. [Online]. Available: http://doi.acm.org/

10.1145/944645.944651 (cit. on pp. 8, 9).

[24] C.-Y. (Huang, Y.-F. Yin, C.-J. Hsu, T. B. Huang, and T.-M. Chang, “SoC HW/SW

Verification and Validation,” in Proceedings of the 16th Asia and South Pacific

Design Automation Conference, ser. ASPDAC ’11, Yokohama, Japan: IEEE

Press, 2011, pp. 297–300. [Online]. Available: http://dl.acm.org/

citation.cfm?id=1950815.1950882 (cit. on pp. 8, 9).

[25] F. Kesel and R. Bartholomä, Entwurf von digitalen Schaltungen und Systemen

mit HDLs und FPGAs: Einführung mit VHDL und SystemC. Oldenbourg Verlag,

2009 (cit. on p. 9).

[26] N. Abdessaied, Design of a Java Simulator for Fast Prototyping of System-on-

chip. LAP LAMBERT Academic Publishing, 2015 (cit. on p. 9).

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 Simulator,” SIGARCH Comput.

Archit. News, vol. 39, no. 2, pp. 1–7, 2011-08. [Online]. Available: http:

//doi.acm.org/10.1145/2024716.2024718 (cit. on p. 12).

[28] A. Roelke and M. R. Stan, “Risc5: Implementing the RISC-V ISA in gem5,” in

First Workshop on Computer Architecture Research with RISC-V (CARRV), 2017

(cit. on p. 12).

[29] (2018). gem5, Git repository. version a66fe6a8, [Online]. Available: https:

//gem5.googlesource.com/public/gem5 (visited on 2018-07-16) (cit. on

pp. 13, 20).

[30] C. Menard, J. Castrillon, M. Jung, and N. Wehn, “System simulation with

gem5 and SystemC: The keystone for full interoperability,” in 2017 Interna-

tional Conference on Embedded Computer Systems: Architectures, Modeling,

and Simulation (SAMOS), 2017-07, pp. 62–69 (cit. on pp. 12, 34, 35).

[31] F. Rosa, L. Ost, R. Reis, and G. Sassatelli, “Instruction-driven timing CPU model

for efficient embedded software development using OVP,” in 2013 IEEE 20th

International Conference on Electronics, Circuits, and Systems (ICECS), 2013-12,

pp. 855–858 (cit. on p. 13).

[32] (2018). Technology OVPsim, Imperas Software, [Online]. Available: http:

//www.ovpworld.org/technology_ovpsim (visited on 2018-07-20) (cit.

on pp. 13, 35).

http://doi.acm.org/10.1145/944645.944651
http://doi.acm.org/10.1145/944645.944651
http://dl.acm.org/citation.cfm?id=1950815.1950882
http://dl.acm.org/citation.cfm?id=1950815.1950882
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://gem5.googlesource.com/public/gem5
https://gem5.googlesource.com/public/gem5
http://www.ovpworld.org/technology_ovpsim
http://www.ovpworld.org/technology_ovpsim

Bibliography 56

[33] (2018). General Information about OVP Models, Imperas Software, [Online].
Available: http://www.ovpworld.org/technology_models (visited on

2018-07-20) (cit. on p. 13).

[34] (2018). OVP Technology works well with Accellera (OSCI) SystemC, Imperas

Software, [Online]. Available: http://www.ovpworld.org/technology_

systemc (visited on 2018-07-20) (cit. on p. 13).

[35] K. T. Cheng and Y. C. Wang, “Using mobile GPU for general-purpose computing;

a case study of face recognition on smartphones,” in Proceedings of 2011

International Symposium on VLSI Design, Automation and Test, 2011-04, pp. 1–

4 (cit. on p. 14).

[36] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing

CUDA workloads using a detailed GPU simulator,” in Performance Analysis of

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,

IEEE, 2009, pp. 163–174 (cit. on p. 14).

[37] (2018). gpgpu-sim, Git repository. version ba33904b, [Online]. Available:

https://github.com/gpgpu-sim/gpgpu-sim_distribution (visited on

2018-07-17) (cit. on p. 14).

[38] R. Thomas, “A Parser of the C++ Programming Language,” 2005 (cit. on

p. 17).

[39] A. Hein, “Identification and bridging of semantic gaps in the context of multi-

domain engineering,” in Forum on Philosophy, Engineering & Technology, 2010

(cit. on p. 17).

[40] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An an-

notated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000

(cit. on p. 19).

[41] The Rust Team, The Rust Programming Language. 2008-10 (cit. on p. 19).

[42] Swift. Apple Inc. (cit. on p. 19).

[43] Microsoft: Windows NT Workstation Resource Kit. Microsoft Press, 1996 (cit.

on p. 20).

[44] R. Petersen, Fedora Linux Servers with systemd. Surfing Turtle Press, 2018

(cit. on p. 20).

[45] (2018). configparser — Configuration file parser, Python Software Foun-

dation, [Online]. Available: https://docs.python.org/3/library/

configparser.html (visited on 2018-08-12) (cit. on p. 20).

[46] (2011). Java API for handling Windows ini file format, [Online]. Available:

http://ini4j.sourceforge.net/index.html (visited on 2018-08-12)

(cit. on p. 20).

http://www.ovpworld.org/technology_models
http://www.ovpworld.org/technology_systemc
http://www.ovpworld.org/technology_systemc
https://github.com/gpgpu-sim/gpgpu-sim_distribution
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html
http://ini4j.sourceforge.net/index.html

Bibliography 57

[47] M. Kalicinski and R. Sebastian. (2013). Boost.PropertyTree, [Online]. Avail-

able: https://www.boost.org/doc/libs/1_65_1/doc/html/property_

tree.html (visited on 2018-07-31) (cit. on pp. 20, 30).

[48] D. Bartholomew, “QEMU: a Multihost, Multitarget Emulator,” Linux Journal,

vol. 2006, no. 145, p. 3, 2006 (cit. on p. 21).

[49] V. David and N. M. Josuttis, “C++ Templates: The Complete Guide,” Addison-

Wesley Professional, 2002 (cit. on p. 22).

[50] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, and Tools (2nd Edition). Addison Wesley (cit. on p. 24).

[51] G. Phipps, “Comparing observed bug and productivity rates for Java and

C++,” Software: Practice and Experience, vol. 29, no. 4, pp. 345–358, 1999

(cit. on p. 25).

[52] C. Lattner, “LLVM and Clang: Next generation compiler technology,” in The

BSD conference, 2008 (cit. on p. 28).

[53] (2018). Clang 7 Documentation: LibTooling, [Online]. Available: https:

//clang.llvm.org/docs/LibTooling.html (visited on 2018-07-31) (cit.

on p. 28).

[54] A. Mukherjee, Learning Boost C++ libraries : solve practical programming

problems using powerful, portable, and expressive libraries from Boost. Packt

Publishing, 2015 (cit. on p. 30).

[55] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient Automatic Visual-

ization of SystemC Designs.,” in FDL, 2003, pp. 646–658 (cit. on p. 32).

[56] R. Drechsler, G. Fey, C. Genz, and D. Große, “SyCE: An integrated environ-

ment for system design in SystemC,” in Rapid System Prototyping, 2005.(RSP

2005). The 16th IEEE International Workshop on, IEEE, 2005, pp. 258–260

(cit. on p. 32).

[57] B. Jasmin and M. Summerfield, C++ GUI Programming with Qt4. Prentice

Hall, 2008 (cit. on p. 32).

[58] R. Lischner, STL: pocket reference. O’Reilly, 2009 (cit. on p. 33).

[59] (2018). Model/View Programming, The Qt Company Ltd., [Online]. Avail-

able: https://doc.qt.io/qt- 5/model- view- programming.html

(visited on 2018-08-01) (cit. on p. 33).

[60] R. Jain. (2011). Types of Workloads, [Online]. Available: https://www.cse.

wustl.edu/∼jain/cse567-11/ftp/k_04tow.pdf (visited on 2018-08-21)

(cit. on p. 40).

https://www.boost.org/doc/libs/1_65_1/doc/html/property_tree.html
https://www.boost.org/doc/libs/1_65_1/doc/html/property_tree.html
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://doc.qt.io/qt-5/model-view-programming.html
https://www.cse.wustl.edu/~jain/cse567-11/ftp/k_04tow.pdf
https://www.cse.wustl.edu/~jain/cse567-11/ftp/k_04tow.pdf

Bibliography 58

[61] Y. Sundblad, “The Ackermann Function. A Theoretical, Computational, and

Formula Manipulative Study,” BIT Numerical Mathematics, vol. 11, no. 1,

pp. 107–119, 1971 (cit. on p. 40).

[62] J. Sorenson, “An Introduction to Prime Number Sieves,” ComputerScience

Technical Report, Tech. Rep., 1990 (cit. on p. 40).

[63] K. Achilles, “Monte-Carlo-Pi,” in BASIC und Pascal im Vergleich, Springer,

1983, pp. 72–74 (cit. on p. 40).

[64] (2018). Coremark: An EEMBC Benchmark, [Online]. Available: https:

//www.eembc.org/coremark/ (visited on 2018-09-29) (cit. on p. 40).

[65] (2017). Callgrind: a call-graph generating cache and branch prediction

profiler, [Online]. Available: http://valgrind.org/docs/manual/cl-

manual.html (visited on 2018-09-29) (cit. on p. 42).

[66] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call Graph Execution

Profiler,” in Proceedings of the 1982 SIGPLAN Symposium on Compiler Construc-

tion, ser. SIGPLAN ’82, Boston, Massachusetts, USA: ACM, 1982, pp. 120–

126. [Online]. Available: http://doi.acm.org/10.1145/800230.806987

(cit. on p. 43).

[67] S. Wolfman. (1999-09). Profiling with GProf, [Online]. Available: https://

users.cs.duke.edu/∼ola/courses/programming/gprof.html (visited

on 2018-09-29) (cit. on p. 43).

[68] J. Spolsky, “The Law of Leaky Abstractions,” in Joel on Software, Springer,

2004, pp. 197–202 (cit. on p. 46).

https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html
http://doi.acm.org/10.1145/800230.806987
https://users.cs.duke.edu/~ola/courses/programming/gprof.html
https://users.cs.duke.edu/~ola/courses/programming/gprof.html

	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Current Approaches
	1.3.1 Virtual Platforms
	1.3.2 Standardization Between Tools
	1.3.3 Schematic Views

	1.4 Goals

	2 Fundamentals
	2.1 Simulation in Computer Architecture Design
	2.1.1 Register Transfer Level
	2.1.2 Transaction Level Modeling

	2.2 SystemC
	2.2.1 Primitives of SystemC TLM
	2.2.2 Simulation
	2.2.3 Use in this Thesis

	2.3 Available Components
	2.3.1 gem5
	2.3.2 OVPsim
	2.3.3 GPGPU-Sim

	3 Method
	3.1 Primitives of Configurations
	3.1.1 Primitives Inherited From SystemC
	3.1.2 Bus Configurations as an Additional Primitive

	3.2 Configuration Format
	3.2.1 SystemC
	3.2.2 Intermediate Languages
	3.2.3 Domain Specific Language
	3.2.4 INI

	3.3 From Configuration to Running Simulation
	3.3.1 Dynamic Setup
	3.3.2 Code Generation

	3.4 Implementation as a Shared Library

	4 Implementation
	4.1 Core Library
	4.1.1 Object Oriented Configuration
	4.1.2 Type Information
	4.1.3 Parsing INI files
	4.1.4 Translation to SystemC

	4.2 Command Line Interface
	4.3 Graphical User Interface
	4.4 Porting SystemC Modules to Kras
	4.4.1 gem5
	4.4.2 OVPsim
	4.4.3 GPGPU-Sim

	5 Evaluation
	5.1 Cost of SystemC Coupling
	5.1.1 Test Setup
	5.1.2 Results
	5.1.3 Origin of Overhead
	5.1.3.1 Overhead for gem5 Configurations
	5.1.3.2 Overhead for OVPsim Configurations

	5.1.4 Differences Depending on Workload
	5.1.5 Consequences

	5.2 Goals
	5.2.1 Extensibility
	5.2.2 Abstract Configurations
	5.2.3 Cooperability

	6 Conclusion
	Bibliography

